A THEOREM OF BEURLING AND TSUJI IS BEST POSSIBLE

SHINJI YAMASHITA

Abstract. We shall show that Beurling-Tsuji’s theorem (see Theorem A) is, in a sense, best possible. For each pair a, b ∈ (0, + ∞) there exists a function f holomorphic in \(|z| < 1\) such that the Euclidean area of the Riemannian image of each non-Euclidean disk of non-Euclidean radius a, is bounded by b, and such that f has finite angular limit nowhere on the unit circle.

1. Introduction. Let \(D = \{|z| < 1\}\), and let \(\Gamma = \{|z| = 1\}\). For a function f holomorphic in D, and for a subset E of D we use the notation

\[A(E, f) = \iint_E |f'(z)|^2 \, dx \, dy, \quad z = x + iy. \]

The following theorem is due to A. Beurling and M. Tsuji.

Theorem A ([1], [4], see [5, Theorem VIII.49, p. 344]). Let f be a function holomorphic in D with \(A(D, f) < + \infty\). Then f has a finite angular limit at each point of \(\Gamma\) except for a set of zero logarithmic capacity.

We shall show that extensions of Theorem A are, in a sense, impossible.

Consider the non-Euclidean hyperbolic metric

\[o(w, z) = -\log \frac{|z - w|}{|1 - zw|}, \quad z, w \in D, \]

to define

\[H(z, a) = \{w \in D; o(w, z) < a\}, \quad z \in D, a \in (0, + \infty]. \]

We let \(F(a, b)\) be the family of all holomorphic functions f in D such that, for each \(z \in D\), \(A(H(z, a), f) < b\), where \(a \in (0, + \infty]\) and \(b \in (0, + \infty)\). Then, f of Theorem A belongs to \(F(+ \infty, b)\) with \(b = A(D, f)\).

Theorem 1. Given \(a \in (0, + \infty)\) and \(b \in (0, \infty)\), we may find \(f \in F(a, b)\) such that neither Re \(f\) nor Im \(f\) has a finite angular limit at any point of \(\Gamma\).

Thus, f has not a finite angular limit at any point of \(\Gamma\).

2. Bloch function. A function f in D is called Bloch [3] if f is holomorphic in D and if

\[\beta(f) = \sup_{z \in D} (1 - |z|^2)|f'(z)| < + \infty. \]

Let \(B(c)\) be the family of all Bloch functions f with \(\beta(f) < c\), \(c \in (0, + \infty)\).
Theorem 2. (2.1) If \(a \in (0, + \infty) \), then each \(f \in B(c) \) is a member of \(F(a, b) \) with
\[
b = \pi c^2 p(a)^2 / (1 - p(a)^2),
\]
where
\[
p(a) = (e^{2a} - 1) / (e^{2a} + 1).
\]
(2.2) If \(a \in (0, + \infty] \), \(b \in (0, + \infty) \), and if \(f \in F(a, b) \), then \(f \in B(c) \) with
\[
c^2 = b / \left[\pi p(a)^2 \right] \quad (p(+\infty) = 1).
\]

Proof. (2.1) Since
\[
|f'(w)| < c(1 - |w|^2)^{-1}, \quad w \in D,
\]
it follows that, for each \(z \in D \),
\[
A(H(z,a),f) < c^2 \int \int_{H(z,a)} (1 - |w|^2)^{-2} \, dx \, dy
\]
\[
= c^2 \int \int_{|w| < p(a)} (1 - |w|^2)^{-2} \, dx \, dy = b \quad (w = x + iy),
\]
because \((1 - |w|^2)^{-2} dx \, dy\) is invariant under non-Euclidean transformations.

(2.2) Set \(p = p(a) \), and for each fixed \(z \in D \), set
\[
g(w) = f((pw + z) / (1 + \bar{p}w)), \quad w \in D.
\]
Then
\[
\pi p^2 (1 - |z|^2)^2 |f'(z)|^2 = \pi |g'(0)|^2 \leq A(D, g) = A(H(z,a),f) \leq b.
\]
Therefore, \(\beta(f) \leq c \), whence \(f \in B(c) \).

3. Proof of Theorem 1. We shall make use of the two lemmata due to P. A. Lappan:

Lemma 1 [2, p. 113]. There exists a holomorphic function \(g \) in \(D \), satisfying
\[
\sup_{z \in D} (1 - |z|) |g(z)| < 2, \quad (3.1)
\]
and
\[
\limsup_{0 < r \to 1^-} (1 - r) |g(r\xi)| > 0 \quad (3.2)
\]
for each \(\xi \in \Gamma \).

Lemma 2 [2, Lemma 3]. Let \(f \) be a holomorphic function in \(D \) such that
\[
\limsup_{0 < r \to 1^-} (1 - r) |f''(r\xi)| > 0 \quad (3.3)
\]
at a point \(\xi \in \Gamma \). Then, neither \(\text{Re } f \) nor \(\text{Im } f \) has a finite angular limit at \(\xi \).

We note that our Lemma 2 is worded differently than Lemma 3 of [2], but the content is equivalent.

For the proof of Theorem 1 we choose \(k > 0 \) such that
\[k^2 = 16\pi p(a)^2 / \left[b(1 - p(a)^2) \right]. \] (3.4)

Let \(f \) be a function holomorphic in \(D \) such that \(f' = k^{-1}g \), where \(g \) is the function in Lemma 1. Then it follows from (3.1) that \(f \in B(c) \) with \(c = 4k^{-1} \). It follows from Theorem 2, (2.1), together with (3.4) that \(f \in F(a, b) \). It further follows from (3.2) that (3.3) is true at every point \(\xi \) of \(\Gamma \). Thus, our assertion on the angular limits of \(\text{Re} f \) and \(\text{Im} f \) follows from Lemma 2.

References

5. ----, Potential theory in modern function theory, Maruzen, Tokyo, 1959.