Minimal $H^{2}$ interpolation in the Carathéodory class
HTML articles powered by AMS MathViewer
- by E. Beller and B. Pinchuk
- Proc. Amer. Math. Soc. 72 (1978), 289-293
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507325-8
- PDF | Request permission
Abstract:
For $({c_1}, \ldots ,{c_n})$ in ${{\mathbf {C}}^n}$, let $C({c_1}, \ldots ,{c_n})$ denote the class of functions $f(z) = 1 + {c_1}z + \cdots + {c_n}{z^n} + \Sigma _{k = n + 1}^\infty {a_k}{z^k}$ which are analytic and satisfy $\operatorname {Re} f(z) > 0$ in the unit disc. The unique function of least ${H^2}$ norm in $C({c_1}, \ldots ,{c_n})$ is explicitly determined.References
- Magnus R. Hestenes, Calculus of variations and optimal control theory, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0203540
- Albert Pfluger, Some coefficient problems for starlike functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 2 (1976), 383–396. MR 0492213, DOI 10.5186/aasfm.1976.0226
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 289-293
- MSC: Primary 30D50
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507325-8
- MathSciNet review: 507325