Inner functions and the maximal ideal space of $H^{\infty }(U^{n})$
HTML articles powered by AMS MathViewer
- by S. H. Kon
- Proc. Amer. Math. Soc. 72 (1978), 294-296
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507326-X
- PDF | Request permission
Abstract:
For the case of the polydisc, Range has shown that the Shilov boundary ${\partial _n}$ of ${H^\infty }({U^n})$ is a proper subset of $\tau {X_n}$, the set of all restrictions of complex homomorphisms of ${L^\infty }({T^n})$ to ${H^\infty }({U^n})$. In this paper, we show that $\tau {X_n}$ is a proper subset of those complex homomorphisms of ${H^\infty }({U^n})$ which are unimodular on the class of all inner functions.References
- R. G. Douglas and Walter Rudin, Approximation by inner functions, Pacific J. Math. 31 (1969), 313–320. MR 254606, DOI 10.2140/pjm.1969.31.313
- R. Michael Range, A small boundary for $H^{\infty }$ on the polydisc, Proc. Amer. Math. Soc. 32 (1972), 253–255. MR 290115, DOI 10.1090/S0002-9939-1972-0290115-6
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 294-296
- MSC: Primary 46J15; Secondary 32A35
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507326-X
- MathSciNet review: 507326