On the stability of the linear mapping in Banach spaces
HTML articles powered by AMS MathViewer
- by Themistocles M. Rassias
- Proc. Amer. Math. Soc. 72 (1978), 297-300
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
- PDF | Request permission
Abstract:
Let ${E_1},{E_2}$ be two Banach spaces, and let $f:{E_1} \to {E_2}$ be a mapping, that is “approximately linear". S. M. Ulam posed the problem: “Give conditions in order for a linear mapping near an approximately linear mapping to exist". The purpose of this paper is to give an answer to Ulam’s problem.References
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224. MR 4076, DOI 10.1073/pnas.27.4.222 T. M. Rassias, Vector fields on Banach manifolds (to appear).
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- S. M. Ulam, Problems in modern mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964. MR 0280310
- Stanislaw Ulam, Sets, numbers, and universes: selected works, Mathematicians of Our Time, Vol. 9, MIT Press, Cambridge, Mass.-London, 1974. Edited by W. A. Beyer, J. Mycielski and G.-C. Rota. MR 0441664 K. Yosida, Functional analysis, Springer, Berlin-Göttingen-Heidelberg, 1965.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 297-300
- MSC: Primary 47H15
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
- MathSciNet review: 507327