ON THE STABILITY OF THE LINEAR MAPPING IN BANACH SPACES

THEMISTOCLES M. RASSIAS

Abstract. Let E_1, E_2 be two Banach spaces, and let $f: E_1 \to E_2$ be a mapping, that is "approximately linear". S. M. Ulam posed the problem: "Give conditions in order for a linear mapping near an approximately linear mapping to exist". The purpose of this paper is to give an answer to Ulam's problem.

Theorem. Consider E_1, E_2 to be two Banach spaces, and let $f: E_1 \to E_2$ be a mapping such that $f(tx)$ is continuous in t for each fixed x. Assume that there exists $\theta > 0$ and $p \in [0, 1)$ such that
\[
\frac{\|f(x+y) - f(x) - f(y)\|}{\|x\|^p + \|y\|^p} \leq \theta, \quad \text{for any } x, y \in E_1.
\]
Then there exists a unique linear mapping $T: E_1 \to E_2$ such that
\[
\frac{\|f(x) - T(x)\|}{\|x\|^p} \leq \frac{2\theta}{2 - 2^p}, \quad \text{for any } x \in E_1.
\]

Proof. Claim that
\[
\frac{\|f(2^n x) - f(x)\|}{\|x\|^p} \leq \theta \sum_{m=0}^{n-1} 2^{m(p-1)}
\]
for any integer n, and some $\theta > 0$. The verification of (3) follows by induction on n. Indeed the case $n = 1$ is clear because by the hypothesis we can find θ, that is greater or equal to zero, and p such that $0 < p < 1$ with
\[
\frac{\|f(2x) - f(x)\|}{\|x\|^p} \leq \theta.
\]
Assume now that (3) holds and we want to prove it for the case $(n + 1)$. However this is true because by (3) we obtain
\[
\frac{\|f(2^n \cdot 2x) - f(2x)\|}{\|2x\|^p} \leq \theta \sum_{m=0}^{n-1} 2^{m(p-1)},
\]
therefore
By the triangle inequality we obtain
\[
\left\| \frac{1}{2^n + 1} \left[f(2^n + 1)x \right] - f(x) \right\| < \frac{1}{2^n + 1} \left\| f(2^n + 1)x \right\| - \frac{1}{2} \left[f(2^n + 1)x \right] - \frac{1}{2} \left[f(2^n) - f(x) \right] \leq \theta \|x\|^p \sum_{m=0}^{n} 2^{m(p-1)}.
\]

Thus
\[
\frac{\left\| \frac{1}{2^n + 1} \left[f(2^n + 1)x \right] - f(x) \right\|}{\|x\|^p} < \theta \sum_{m=0}^{n} 2^{m(p-1)}
\]
and (3) is valid for any integer \(n\). It follows then that
\[
\frac{\left\| \frac{1}{2^n} \left[f(2^n x) \right] - f(x) \right\|}{\|x\|^p} \leq \frac{2\theta}{2 - 2^p}, \tag{5}
\]
because \(\sum_{m=0}^{\infty} 2^{m(p-1)}\) converges to \(2/(2 - 2^p)\), as \(0 < p < 1\). However, for \(m > n > 0\),
\[
\left\| \frac{1}{2^m} \left[f(2^m x) \right] - \frac{1}{2^n} \left[f(2^n x) \right] \right\| = \frac{1}{2^n} \left\| \frac{1}{2^{m-n}} \left[f(2^n x) \right] - \left[f(2^m x) \right] \right\| \leq 2^m(2^{m-n}) - \frac{2\theta}{2 - 2^p} \|x\|^p.
\]
Therefore
\[
\lim_{n \to \infty} \left\| \frac{1}{2^m} \left[f(2^m x) \right] - \frac{1}{2^n} \left[f(2^n x) \right] \right\| = 0.
\]
But \(E_2\), as a Banach space, is complete, thus the sequence \(\{f(2^n x)/2^n\}\) converges. Set
\[
T(x) \equiv \lim_{n \to \infty} \frac{1}{2^n} \left[f(2^n x) \right].
\]
It follows that
\[
\left\| f[2^n(x + y)] - f[2^n x] - f[2^n y] \right\| \leq \theta (\|x\|^p + \|y\|^p) = 2^p \theta (\|x\|^p + \|y\|^p).
\]
Therefore
\[
\frac{1}{2^n} \left\| f[2^n(x + y)] - f[2^n x] - f[2^n y] \right\| \leq 2^{n(p-1)} \theta (\|x\|^p + \|y\|^p)
\]
or
\[
\lim_{n \to \infty} \frac{1}{2^n} \left\| f[2^n(x + y)] - f[2^n x] - f[2^n y] \right\| \leq \lim_{n \to \infty} 2^{n(p-1)} \theta (\|x\|^p + \|y\|^p)
\]
or
\[\lim_{n \to \infty} \frac{1}{2^n} f[2^n(x + y)] - \lim_{n \to \infty} \frac{1}{2^n} f[2^n x] - \lim_{n \to \infty} \frac{1}{2^n} f[2^n y] = 0 \]

or

\[\|T(x + y) - T(x) - T(y)\| = 0 \quad \text{for any } x, y \in E_1 \]

or

\[T(x + y) = T(x) + T(y) \quad \text{for all } x, y \in E_1. \]

Since \(T(x + y) = T(x) + T(y) \) for any \(x, y \in E_1 \), \(T(rx) = rT(x) \) for any rational number \(r \). Fix \(x_0 \in E_1 \) and \(\rho \in E_2^* \) (the dual space of \(E_2 \)). Consider the mapping

\[\mathbb{R} \ni t \mapsto \rho(T(tx)) = \phi(t). \]

Then \(\phi: \mathbb{R} \to \mathbb{R} \) satisfies the property that \(\phi(a + b) = \phi(a) + \phi(b) \), i.e. \(\phi \) is a group homomorphism. Moreover \(\phi \) is a Borel function, because of the following reasoning. Let \(\phi(t) = \lim_{n \to \infty} \rho(f(2^n tx_0))/2^n \) and set \(\phi_n(t) = \rho(f(2^n tx_0))/2^n \). Then \(\phi_n(t) \) are continuous functions. But \(\phi(t) \) is the pointwise limit of continuous functions, thus \(\phi(t) \) is a Borel function. It is a known fact that if \(\phi: \mathbb{R}^n \to \mathbb{R}^n \) is a function such that \(\phi \) is a group homomorphism, i.e. \(\phi(x + y) = \phi(x) + \phi(y) \) and \(\phi \) is a measurable function, then \(\phi \) is continuous. In fact this statement is also true if we replace \(\mathbb{R}^n \) by any separable, locally compact abelian group (see for example: W. Rudin [3]).

Therefore \(\phi(t) \) is a continuous function. Let \(a \in \mathbb{R} \). Then \(a = \lim_{n \to \infty} r_n \), where \(\{r_n\} \) is a sequence of rational numbers. Hence

\[\phi(at) = \phi \left(\lim_{n \to \infty} r_n \right) = \lim_{n \to \infty} \phi(tr_n) = \left(\lim_{n \to \infty} r_n \right) \phi(t) = a\phi(t). \]

Therefore \(\phi(at) = a\phi(t) \) for any \(a \in \mathbb{R} \). Thus \(T(ax) = aT(x) \) for any \(a \in \mathbb{R} \).

Hence \(T \) is a linear mapping.

From (5) we obtain

\[\lim_{n \to \infty} \frac{\left\| f(2^n x) \right\|/2^n - f(x)}{\|x\|^p} \leq \lim_{n \to \infty} \frac{2\theta}{2 - 2^p} \]

or equivalently,

\[\frac{\|T(x) - f(x)\|}{\|x\|^p} \leq \varepsilon, \quad \text{where } \varepsilon = \frac{2\theta}{2 - 2^p}, \tag{6} \]

Thus we have obtained (2).

We want now to prove that \(T \) is the unique such linear mapping. Assume that there exists another one, denoted by \(g: E_1 \to E_2 \) such that \(T(x) \not\equiv g(x) \), \(x \in E_1 \). Then there exists a constant \(\varepsilon_1 \), greater or equal to zero, and \(q \) such that \(0 < q < 1 \) with

\[\frac{\|g(x) - f(x)\|}{\|x\|^q} \leq \varepsilon_1. \tag{7} \]

By the triangle inequality and (6) we obtain
\[\| T(x) - g(x) \| \leq \| T(x) - f(x) \| + \| f(x) - g(x) \| \leq \varepsilon \| x \|^p + \varepsilon_1 \| x \|^q. \]

Therefore

\[\| T(x) - g(x) \| = \left\| \frac{1}{n} \left[T(nx) - g(nx) \right] \right\| = \frac{1}{n} \| T(nx) - g(nx) \| \]

\[\leq \frac{1}{n} \left(\varepsilon \| nx \|^p + \varepsilon_1 \| nx \|^q \right) = n^{p-1} \varepsilon \| x \|^p + n^{q-1} \varepsilon_1 \| x \|^q. \]

Thus \(\lim_{n \to \infty} \| T(x) - g(x) \| = 0 \) for all \(x \in E_1 \) and hence \(T(x) \equiv g(x) \) for all \(x \in E_1 \). Q.E.D.

This solves a problem posed by S. M. Ulam [4], [5]: When does a linear mapping near an "approximately linear" mapping exist? The case \(p = 0 \) was answered by D. H. Hyers [1]. Thus we have succeeded here to give a generalized solution to Ulam’s problem.

ACKNOWLEDGMENT. It is my pleasure to express my thanks to Professor D. H. Hyers, who read a previous version of the manuscript, for his helpful comments.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY, CALIFORNIA 94720

Current address: Pellana, Sparta, Lacony, Greece