EXTREME INVARIANT POSITIVE OPERATORS ON L_p-SPACES

HARALD LUSCHGY

Abstract. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be finite positive measure spaces. In this note we present characterizations of the extreme points of the convex set of all positive linear operators $T: L_p(\mu) \to L_q(\nu)$ with $T 1_X = 1_Y$ which are invariant with respect to a semigroup of positive constant preserving contractions on $L_p(\mu)$, $1 < p < \infty$, $1 < q < \infty$.

Introduction. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be finite positive measure spaces and let $K[L_p(\mu), L_q(\nu)]$ denote the convex set of all positive linear operators $T: L_p(\mu) \to L_q(\nu)$ with $T 1_X = 1_Y$ for $1 < p < \infty$, $1 < q < \infty$. It is known that an operator T in $K[L_p(\mu), L_q(\nu)]$ is an extreme point of this set if and only if T is a lattice homomorphism [6, III.9.2]. Further characterizations of the extreme points of $K[L_\infty(\mu), L_\infty(\nu)]$ as operators which are multiplicative or which carry characteristic functions into characteristic functions are given by Phelps [5, 2.2]. We will characterize the extreme points of the set $K[L_p(\mu), L_q(\nu)]_G$ of all operators in $K[L_p(\mu), L_q(\nu)]$ which are invariant with respect to a semigroup G of positive constant preserving contractions on $L_p(\mu)$ for $p < \infty$. These characterizations, including generalizations of the above mentioned results, are in part similar to those of the extreme points of $K[C(X), C(Y)]_G$ for compact spaces X and Y, which have been stated by Converse, Namioka and Phelps [2, 5.3].

1. Preliminaries. Throughout suppose that (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) are finite positive measure spaces. 1_A stands for the characteristic function of A. The convex set of all positive linear operators $T: L_p(\mu) \to L_q(\nu)$ with $T 1_X = 1_Y$ is denoted by $K[L_p(\mu), L_q(\nu)]$ for $1 < p < \infty$, $1 < q < \infty$. Let G be a sub-semigroup of $K[L_p(\mu), L_p(\mu)]$. A linear operator $T: L_p(\mu) \to L_q(\nu)$ is called invariant if $TV = T$ for all $V \in G$. $K[L_p(\mu), L_q(\nu)]_G$ denotes the convex set of all invariant elements in $K[L_p(\mu), L_q(\nu)]$. Furthermore, we denote by D the linear hull of the set $\{V f - f: f \in L_p(\mu), V \in G\}$ and by F the fixed space of G, i.e. $F = \{f \in L_p(\mu): V f = f$ for all $V \in G\}$.

The key for the characterizations of extreme points is the following fact. If G is a contractive semigroup, i.e. $\sup \{\|V\|: V \in G\} < 1$ and $p < \infty$, then the semigroup $\text{co}(G)^-$ has a zero element, where $\text{co}(G)^-$ denotes the closed convex hull of G in the space of all continuous linear operators on $L_p(\mu)$,
endowed with the topology of simple convergence [4, 1.4 and 2.3]. The (unique) zero element \(P \) of \(\text{co}(G)^- \) is a positive contractive projection onto \(F \) with \(P 1_X = 1_X \) (cf. [6, III.7.2]). Furthermore, an operator \(T \in K[L_p(\mu), L_q(\nu)] \) is invariant if and only if \(TP = T \). This follows from the continuity of \(T \) (cf. [6, II.5.3]).

2. Extreme invariant operators. The following characterization, which holds without any further hypotheses on \(G \) and \(p \), is a special case of [3, Theorem 5].

Theorem 1. Suppose \(T \in K[L_p(\mu), L_q(\nu)]_G \). Then \(T \) is an extreme point of \(K[L_p(\mu), L_q(\nu)]_G \) if and only if \(\inf \{ T(|f - h|) : h \in R 1_X + D \} = 0 \) for each \(f \in L_p(\mu) \).

Before we can formulate the main result, we need the following information.

Lemma. If \(G \) is a contractive semigroup, \(p < \infty \), and \(P \) is the zero element of \(\text{co}(G)^- \), then \(F = L_p(\mathbb{1}^\perp) \) and \(P \) is the \(\mathfrak{A}_0 \)-conditional expectation with \(\mathfrak{A}_0 = \{ A \in \mathfrak{A} : 1_A \in F \} \).

Proof. Obviously \(F \) is a closed subspace of \(L_p(\mu) \) with \(1_X \in F \). Furthermore, \(F \) is a sublattice. Let \(f \in F \) and \(K \in G \). Since \(f^+ > f \) and \(f^+ > 0 \) we have \(Vf^+ > Vf = f \) and \(Vf^+ > 0 \). Hence, \(Vf^+ > f^+ \) and this implies \(Vf^+ = f^+ \) because \(V \) is a contraction. The first assertion follows from the well-known characterization of closed sublattices of \(L_p(\mu) \) which contain \(1_X \) (cf. [6, III.11.2]). In view of the above mentioned properties of \(P \), the second assertion is a result of Ando [1, (proof of) Theorem 2].

Let \(E_{\mathfrak{A}_0} \) denote the \(\mathfrak{A}_0 \)-conditional expectation operator.

Theorem 2. Suppose \(T \in K[L_p(\mu), L_q(\nu)]_G \) and \(p < \infty \). If \(G \) is a contractive semigroup, then the following assertions are equivalent:

(i) \(T \) is an extreme point of \(K[L_p(\mu), L_q(\nu)]_G \).

(ii) \(\inf \{ T(10 f) : t \in R \} = 0 \) for each \(f \in F \).

(iii) \(T(E_{\mathfrak{A}_0} f) = TfTh \) for each \(f \in L_p(\mu), h \in L_\infty(\mu) \).

(iv) \(T(fh) = TfTh \) for each \(f \in F, h \in L_\infty(\mu, \mathfrak{A}_0) \).

(v) \(T|F \) is a lattice homomorphism.

(vi) \(T \) carries \(\mathfrak{A}_0 \)-measurable characteristic functions into characteristic functions.

Proof. The equivalence of (i) and (ii) follows from [3, Theorem 6].

(i) \(\Rightarrow \) (iii). Clearly it is sufficient to prove that assertion (iii) holds for those \(h \in L_\infty(\mu) \) such that \(0 < h < 1_X \). Assuming \(0 < h < 1_X \), we define a map \(T_h : L_p(\mu) \to L_q(\nu) \) by \(T_h f = (E_{\mathfrak{A}_0} f) \cdot h - TfTh \). Then \(T_h \) is an invariant linear operator with \(T_h 1_X = 0 \). If \(f > 0 \), then \((T + T_h)f = Tf(1_Y - Th) + T(E_{\mathfrak{A}_0} f) \cdot h > 0 \) and \((T - T_h)f = T(E_{\mathfrak{A}_0} f) \cdot (1_X - h) + TfTh > 0 \). Thus \(T \pm T_h \in K[L_p(\mu), L_q(\nu)]_G \) holds. Since \(T \) is extreme, this implies \(T_h = 0 \).

(iii) \(\Rightarrow \) (iv) is obvious.
EXTREME INVARIANT POSITIVE OPERATORS

(iv) \Rightarrow (v). First let $f \in L_\infty(\mu|\mathcal{A}_0)$. The chain $(T|f|^2) = T(|f|^2) = T(f^2) = (Tf)^2 = |Tf|^2$ shows that $T|f| = T|f|$ holds. Since $L_\infty(\mu|\mathcal{A}_0)$ is dense in F and furthermore, T and the lattice operations on $L_p(\mu)$ and $L_q(\nu)$ are continuous, this implies that $T|F$ is a lattice homomorphism.

(v) \Rightarrow (vi). For $A \in \mathcal{A}_0$ we obtain $T(1_A \wedge T1_{A^c}) = T(1_A \wedge 1_{A^c}) = T0 = 0$. Hence, $T1_A$ is a characteristic function.

(vi) \Rightarrow (ii). Let $A \in \mathcal{A}_0$. Since $T(|1_A - t1_x|) = |1 - t|T1_A + |t|T1_{A^c}$, it follows that

$$\inf\{T(|1_A - t1_x|): t \in \mathbb{R}\} \leq T1_A \wedge T1_{A^c} = 0.$$ By virtue of the continuity of T it is readily verified that $\inf\{T(|f - t1_x|): t \in \mathbb{R}\} = 0$ is valid for each $f \in F$.

Corollary 1. Suppose $T \in K[L_p(\mu), R]_G$. Under the above hypotheses on G and p, T is an extreme point of $K[L_p(\mu), R]_G$ if and only if $T1_A \in \{0, 1\}$ for each $A \in \mathcal{A}_0$.

In the following corollary an application to conditional expectations is given.

Corollary 2. Suppose that \mathcal{A}_1 is a σ-subalgebra of \mathcal{A}_0. Under the above hypotheses on G and p, the operator $E_{\mathcal{A}_1}$ is an extreme point of $K[L_p(\mu), L_p(\mu)]_G$ if and only if for each $A \in \mathcal{A}_0$ there exists $B \in \mathcal{A}_1$ with $\mu(A \triangle B) = 0$.

Proof. Obviously $E_{\mathcal{A}_1} \in K[L_p(\mu), L_p(\mu)]_G$ holds. The "if" part. Let $A \in \mathcal{A}_0$. By assumption there exists $B \in \mathcal{A}_1$ with $\mu(A \triangle B) = 0$ such that $E_{\mathcal{A}_1}1_A = E_{\mathcal{A}_1}1_B = 1_B$. The assertion follows from Theorem 2.

The "only if" part. Let $A \in \mathcal{A}_0$. From Theorem 2 follows

$$\mu(A \cap C) = \int E_{\mathcal{A}_1}(1_A1_C)d\mu$$

$$= \int E_{\mathcal{A}_1}1_A E_{\mathcal{A}_1}1_C d\mu = \int 1_C E_{\mathcal{A}_1}1_A d\mu$$

for each $C \in \mathcal{A}_0$. Hence, $E_{\mathcal{A}_1}1_A = 1_A$. This yields the assertion.

Remark. Let $G \subset K[L_\infty(\mu), L_\infty(\mu)]$. Then $V \in G$ can be extended to a positive linear contraction on $L_1(\mu)$ if (and only if) V is expectation invariant, i.e. $\int Vf d\mu = \int f d\mu$ for each $f \in L_\infty(\mu)$. Thus the preceding characterizations are valid for $p = \infty$ if G is a semigroup of expectation invariant operators.

References

Stiftsherrenstrasse 5, D-4400 Münster/Westfalen, Federal Republic of Germany