An extremal problem for functions of positive real part with application to a radius of convexity problem
HTML articles powered by AMS MathViewer
- by D. H. Hamilton and P. D. Tuan
- Proc. Amer. Math. Soc. 72 (1978), 313-318
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507331-3
- PDF | Request permission
Abstract:
The functional $\operatorname {Re} \{ zp’(z)/(p(z) + \beta + it)\} ,\beta > - 1,|z| \leqslant r,0 < r < 1$, is minimized for all real t over the class of functions of positive real part. The result is applied to obtain the radius of convexity for a family of regular functions.References
- Filip Franciszek Jabłoński and Andrzej Wesołowski, Sur une famille de fonctions holomorphes dans le cercle unité, Ann. Univ. Mariae Curie-Skłodowska Sect. A 21 (1967), 91–99 (1972) (French, with Russian and Polish summaries). MR 330434
- Ronald Jankovics, Über Funktionen mit der Eigenschaft $\textrm {Re}(e^{i\alpha }(f(z)/z-\beta ))<0$, Math. Z. 143 (1975), no. 3, 235–242 (German). MR 372176, DOI 10.1007/BF01214378
- Richard J. Libera, Some radius of convexity problems, Duke Math. J. 31 (1964), 143–158. MR 160890
- A. Wayne Roberts and Dale E. Varberg, Convex functions, Pure and Applied Mathematics, Vol. 57, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR 0442824
- M. S. Robertson, Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc. 106 (1963), 236–253. MR 142756, DOI 10.1090/S0002-9947-1963-0142756-3
- Stephan Ruscheweyh, Duality for Hadamard products with applications to extremal problems for functions regular in the unit disc, Trans. Amer. Math. Soc. 210 (1975), 63–74. MR 382626, DOI 10.1090/S0002-9947-1975-0382626-7
- Stephan Ruscheweyh, Nichtlineare Extremalprobleme für holomorphe Stieltjesintegrale, Math. Z. 142 (1975), 19–23 (German). MR 374406, DOI 10.1007/BF01214844
- V. A. Zmorovič, On the boundaries of starlikeness and boundaries of univalence of certain classes of functions regular in the disc $| z| <1$, Ukrain. Mat. Ž. 18 (1966), no. 3, 28–39 (Russian). MR 0199378
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 313-318
- MSC: Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507331-3
- MathSciNet review: 507331