Spans and intersections of essentially reducing subspaces
HTML articles powered by AMS MathViewer
- by Michael J. Hoffman
- Proc. Amer. Math. Soc. 72 (1978), 333-340
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507334-9
- PDF | Request permission
Abstract:
If P and Q are the projections onto essentially reducing subspaces M and N for an operator, the closed linear span and the intersection of M and N need not be essentially reducing or even essentially invariant. However, they are if $M + N$ is closed, in particular if $PQ = QP$ or if PQ is compact.References
- William Arveson, Notes on extensions of $C^{^*}$-algebras, Duke Math. J. 44 (1977), no. 2, 329–355. MR 438137
- J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42 (1941), 839–873. MR 5790, DOI 10.2307/1968771
- Jacques Dixmier, Étude sur les variétés et les opérateurs de Julia, avec quelques applications, Bull. Soc. Math. France 77 (1949), 11–101 (French). MR 32937
- P. A. Fillmore, J. G. Stampfli, and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179–192. MR 322534
- P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254–281. MR 293441, DOI 10.1016/S0001-8708(71)80006-3
- Barry Simon, Geometric methods in multiparticle quantum systems, Comm. Math. Phys. 55 (1977), no. 3, 259–274. MR 496073
- Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no. 1, 97–113. MR 415338
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 333-340
- MSC: Primary 47A15
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507334-9
- MathSciNet review: 507334