LONGITUDES OF A LINK AND PRINCIPALITY
OF AN ALEXANDER IDEAL

JONATHAN A. HILLMAN

ABSTRACT. In this note it is shown that the longitudes of a \(\mu \)-component homology boundary link \(L \) are in the second commutator subgroup \(G'' \) of the link group \(G \) if and only if the \(\mu \)th Alexander ideal \(\mathcal{A}_\mu(L) \) is principal, generalizing the result announced for \(\mu = 2 \) by R. H. Crowell and E. H. Brown. These two properties were separately hypothesized as characterizations of boundary links by R. H. Fox and N. F. Smythe.

For a \(\mu \)-component homology boundary link \(L \) the first nonvanishing Alexander ideal is \(\mathcal{A}_\mu(L) \). If \(L \) is actually a boundary link, then \(\mathcal{A}_\mu(L) \) is principal and the longitudes of \(L \) lie in the second commutator subgroup of the link group \([2],[6]\). R. H. Crowell and E. H. Brown have announced that the latter two assertions are equivalent for a 2-component homology boundary link \([2]\). This note presents a proof of the following generalization.

Theorem. Let \(L: \bigcup_{j=1}^\mu S^1 \to S^3 \) be a (locally flat) \(\mu \)-component homology boundary link, with group \(G \). Then \(\mathcal{A}_\mu(L) = (\Delta_\mu) \cdot A \) where \(A \) is contained in the annihilator ideal (in \(\Lambda = \mathbb{Z}[\mathbb{Z}^\mu] \approx \mathbb{Z}[t_1, t_1^{-1}, \ldots, t_\mu, t_\mu^{-1}] \) of the image of the longitudes in the \(\Lambda \)-module \(G'/G'' \)), and \(A \) is contained in no proper principal ideal. Hence \(\mathcal{A}_\mu(L) \) is principal if and only if the longitudes of \(L \) lie in \(G'' \).

Proof. \(L \) extends to an imbedding \(N: \bigcup_{j=1}^\mu S^1 \times D^2 \to S^3 \), since it is locally flat. Let \(X = S^3 - \text{int}(\text{Im}(N)) \) have base point \(x_0 \in X - \partial X \). Then \(G \approx \pi_1(X, x_0) \). Let \(p: X' \to X \) be the maximal abelian cover of \(X \) and choose \(x'_0 \in p^{-1}(x_0) \), so that \(\pi_1(X', x'_0) \approx G' \) and \(H_1(X') = G'/G'' \). By definition of homology boundary link there is a map

\[
\begin{align*}
 f: (X, x_0) &\to \bigvee_{j=1}^\mu S^1, \\
 (x, x_0) &\to \bullet
\end{align*}
\]

inducing an epimorphism of fundamental groups, and \(p \) is the pullback via \(f \) of the maximal abelian cover of \(\bigvee_{j=1}^\mu S^1 \). Thus \(X' \) may be constructed by splitting \(X \) along "Seifert surfaces", as was done in \([3]\) for boundary links. For
each \(j \) such that \(1 < j < \mu \), choose \(P_j \in S^j \) distinct from the wedge-point \(* \), and let \(V_j = f^{-1}(P_j) \). After homotoping \(f \) if necessary, each \(V_j \) may be assumed a connected, bicolllared submanifold. Let \(Y = X - \bigcup_{j=1}^{\mu} \text{int} W_j \) where the \(W_j \) are disjoint regular neighborhoods of the \(V_j \) in \(X \). There are two natural embeddings of each \(V_j \) in \(Y \); call one \(\nu_{j+} \) and the other \(\nu_{j-} \). (Making such a choice is equivalent to choosing a local orientation for each \(P_j \) in \(\bigcup_{j=1}^{\mu} S^j \), or choosing orientations for the meridians of \(L \).) \(Y \) is a deformation retract of \(X - V \), where \(V = \bigcup_{j=1}^{\mu} V_j \). Then one has

\[
X' = Y \times \mathbb{Z} / \nu_{j+}(w) \times \langle n_1, \ldots, n_j + 1, \ldots, n_\mu \rangle
\]

\[
\sim \nu_{j-}(w) \times \langle \hat{n}_1, \ldots, n_j, \ldots, n_\mu \rangle, \quad \forall w \in V_j, \quad 1 < j < \mu.
\]

\(G'/G'' = H_1(X') \) then appears in the following segment of a Mayer-Vietoris sequence:

\[
\begin{align*}
\cdots & \xrightarrow{d_0} H_0(V) \otimes \Lambda \xrightarrow{d_1} H_1(V) \otimes \Lambda \xrightarrow{\alpha} H_1(X') \\
& \xrightarrow{\delta} H_0(Y) \otimes \Lambda \xrightarrow{d_0} H_0(X') \otimes \Lambda \xrightarrow{\alpha} \mathbb{Z} \xrightarrow{0}
\end{align*}
\]

where \(d_1|H_*(V) \otimes \Lambda = (\nu_{j+})_* \otimes t_j - (\nu_{j-})_* \otimes 1 \) and homology is taken with integral coefficients. The map \(f \) induces a map from this Mayer-Vietoris sequence to the corresponding one for the maximal abelian covering space of \(\bigcup_{j=1}^{\mu} S^j \):

\[
0 - F(\mu)/F(\mu)'' \xrightarrow{\delta} \Lambda^\mu \xrightarrow{\epsilon} \mathbb{Z} \xrightarrow{0}.
\]

(Here \(F(\mu) \) is the free group of rank \(\mu \), and \(\epsilon: \Lambda \rightarrow \mathbb{Z} \) is the augmentation homomorphism.) Since each \(V_j \) is connected, the maps on the degree zero terms are all isomorphisms. Thus one concludes that

\[
H_1(V) \otimes \Lambda \xrightarrow{d_1} H_1(Y) \otimes \Lambda \xrightarrow{\alpha} K \rightarrow 0
\]

is exact, where

\[
K = \ker(\phi: G'/G'' \rightarrow F(\mu)/F(\mu)'' = \ker(\phi: H_1(X') \rightarrow H_0(V) \otimes \Lambda).
\]

Likewise \(f \) induces a map from the 4 term exact sequence of Crowell [1]

\[
0 \rightarrow G'/G'' \rightarrow A(G) \rightarrow \Lambda \xrightarrow{\epsilon} \mathbb{Z} \xrightarrow{0}
\]

to the corresponding sequence for \(F(\mu) \) (which is just the above Mayer-Vietoris sequence for \(\bigcup_{j=1}^{\mu} S^j \)) and so

\[
0 - K \rightarrow A(G) \rightarrow A(F(\mu)) = \Lambda^\mu \rightarrow 0
\]

is exact. From this last short exact sequence one concludes that \(\delta_k(L) = \delta_k(A(G)) \) is equal to the ideal generated by \(\bigcup_{j=0}^{k} \delta_j(K) \cdot \delta_{k-j}(\Lambda^\mu) \); in particular \(\delta_{\mu-1}(L) = 0 \) and \(\delta_\mu(L) = \delta_0(K) \).

Now the \(\Lambda \)-submodule of \(H_1(X') \) generated by the longitudes is the image of \(H_1(\partial X') \) via the inclusion map, and is contained in the image of \(H_1(Y) \otimes \Lambda \), so is contained in \(K \). Let \(B \) be this submodule, and let \(Q \) be the quotient \(\Lambda \)-module. Thus \(0 - B \rightarrow Q \rightarrow 0 \) is exact, and \(\delta_0(K) = \delta_0(Q) \cdot \delta_0(B) \) (because \(Q \) has a square presentation matrix—see below). It is easy to see that \((\text{Ann}(B))^\mu \subset \delta_0(B)\): if
is a presentation for B with $\varphi(e_i) = \text{eth longitude (where } e_i \text{ is the } i\text{th standard basis element of } \Lambda^n\text{), and if } \alpha_1, \ldots, \alpha_\mu \in \text{Ann}(B) \text{ then}

\Lambda^n \otimes \Lambda^n \rightarrow \Lambda^n \otimes \bar{M} \rightarrow B \rightarrow 0

is also a presentation for B, where $\bar{M} = (M, \text{diag}(\alpha_1, \ldots, \alpha_\mu))$, and so

$$\prod_{i=1}^\mu \alpha_i = \det(\text{diag}(\alpha_1, \ldots, \alpha_\mu)) \in \mathfrak{S}_0(B).$$

It is scarcely more difficult to see that $\mathfrak{S}_0(B) \subset \text{Ann}(B)$: let δ be the determinant of the $\mu \times \mu$ minor M'' of M. Then

$$\Lambda^n \rightarrow \Lambda^n \rightarrow \text{Coker } M'' \rightarrow 0$$

presents a module of which B is a quotient. Now if $\sum m_i e_i \in \Lambda^n$, then by Cramer's rule $\delta \cdot \sum m_i e_i = M''(\sum n_j e_j)$ where n_j is the determinant at the matrix obtained by replacing the ith column of M'' with the column of coefficients (m_i). Hence δ annihilates $\text{Coker } M''$, and a fortiori, B. Therefore $\mathfrak{S}_0(B)$, which is generated by such determinants, is contained in $\text{Ann}(B)$. Thus to prove the theorem it will suffice to show that $\mathfrak{S}_0(B)$ is not contained in any proper principal ideal, and that Q has a presentation of the form $\Lambda^q \rightarrow \Lambda^q \rightarrow Q \rightarrow 0$ so that $\mathfrak{S}_0(Q) = (\det P)$ is principal.

Choose base points in $V_i \cap \partial N(S^1_i \times D^2)$ for each i, $1 \leq i \leq \mu$, and choose paths from these base points to α_0. (Equivalently, X' contains copies of V_i indexed by \mathbb{Z}^μ. Choose one such lift, V'_i, for each i.) If one now orients the link L, the longitudes are unambiguously defined, as elements of G. Let l_i be the image of the ith longitude in B. Since the ith longitude commutes with the ith meridian, one has $(t_i - 1)l_i = 0$. In contrast to the case of boundary links, $\partial V'_i$ will in general have several components; however $\partial V'_i \cap \partial N(S^1_i \times D^2)$ is always homologous in $\partial N(S^1_i \times D^2)$ to the ith longitude, if $i = j$, and to 0 otherwise. $\partial V'_i$ is a union of translates of loops in the homology classes l_1, \ldots, l_μ. Hence there are relations of the form

$$\sum_{j=1}^\mu p_{ij}(t_1, \ldots, t_\mu)l_j = 0$$

in B, and by the above remarks on ∂V_j, one has $p_{ij}(1, \ldots, 1, 1) = 0$ for $i \neq j$ and $p_{ii}(1, \ldots, 1, 1) = \pm 1$. Since $t_i \cdot l_i = 1 \cdot l_i$, one may assume that $p_i = p_0(t_1, \ldots, t_\mu)$ does not involve l_i. Clearly $p_i \prod_{j \neq i} (t_j - 1)$ is the determinant of a $\mu \times \mu$ matrix of relations for B, and so is in $\mathfrak{S}_0(B)$. (For what follows it would be sufficient to observe that it clearly annihilates B, and so the μth power is in $\mathfrak{S}_0(B)$.) Let (c) be a principal ideal containing $\mathfrak{S}_0(B)$. Since Λ is a factorial domain, c may be assumed irreducible. Therefore $p_i \prod_{j \neq i} (t_j - 1) \in (c)$ implies c divides p_i, or some $(t_j - 1)$ for $j > 1$. If $c = t_j - 1$, then c cannot divide $p_i \prod_{k \neq j} (t_k - 1)$ which does not involve t_j. If c divides p_i for each $i,$
1 \leq i \leq \mu$, then c involves none of the variables and hence is in \mathbb{Z}. Since $p_i(1, \ldots, 1) = \pm 1$, $c = \pm 1$ and so $(c) = \Lambda$.

Let $J = \ker(H_1(X - V, \partial X - V) \to H_0(\partial X - V)) = H_1(X - V)/H_1(\partial X - V)$. From the following commutative diagram of Λ-modules

$$
\begin{array}{ccc}
H_1(\partial V) \otimes \Lambda & \to & H_1(V) \otimes \Lambda \\
\downarrow & & \downarrow \\
H_1(\partial X - V) \otimes \Lambda & \to & H_1(X - V) \otimes \Lambda \\
\downarrow & & \downarrow \\
H_1(\partial X') & \to & H_1(X') \\
\end{array}
$$

(with rows from exact sequences of pairs and columns from Mayer-Vietoris sequences of \mathbb{Z}^n-covers), one deduces a commutative diagram

$$
\begin{array}{ccc}
H_1(\partial V) \otimes \Lambda & \to & H_1(V) \otimes \Lambda \\
\downarrow & & \downarrow \\
H_1(\partial X - V) \otimes \Lambda & \to & H_1(X - V) \otimes \Lambda \\
\downarrow & & \downarrow \\
0 & \to & 0 \\
\end{array}
$$

and

$$
\begin{array}{ccc}
K & \to & Q \\
\downarrow & & \downarrow \\
0 & \to & 0 \\
\end{array}
$$

in which all rows and the first two columns are exact. It follows that the third column is exact, and so

$$
(H_1(V)/H_1(\partial V)) \otimes \Lambda \to J \otimes \Lambda \to Q \to 0
$$

is a presentation for Q. Let $\rho = \text{rk}_Z H_1(V)$, $\sigma = \text{rk}_Z H_1(\partial V)$. Since $0 \to H_2(V, \partial V) \to H_1(\partial V) \to H_1(V)$ is exact, one has $\text{rk}_Z(H_1(V)/H_1(\partial V)) = \rho - \sigma + \mu$. Similarly,

$$
H_1(X - V, \partial X - V) \to H_0(\partial X - V) \to H_0(X - V) \to 0
$$

is exact, and $\text{rk}_Z H_0(\partial X - V) = \sigma$, $\text{rk}_Z H_0(X - V) = 1$, so

$$
\text{rk}_Z J = \text{rk}_Z H_1(X - V, \partial X - V) - \sigma + 1 = \text{rk}_Z H_1(S^3 - V, \text{Im } N) - \sigma + 1.
$$

Now each component of the link is the homology boundary of a (singular) surface in $S^3 - V$, and so the natural map

$$
H_1(\text{Im } N) \to H_1(S^3 - V)
$$

is null. Therefore

$$
0 - H_1(S^3 - V) \to H_1(S^3 - V, \text{Im } N) \to H_0(\text{Im } N) \to H_0(S^3 - V) \to 0
$$

is exact, and so $\text{rk}_Z H_1(S^3 - V, \text{Im } N) = \text{rk}_Z H_1(S^3 - V) + \mu - 1 = \text{rk}_Z H_1(V) + \mu - 1$ by Alexander duality $= \rho + \mu - 1$. Thus $\text{rk}_Z J = \rho + \mu$.

\[-\sigma = \text{rk}_2(H_1(V)/H_1(\partial V)), \]
and so \(\mathcal{E}_0(Q) \) is principal. This completes the proof of the theorem.

\textbf{Remarks.} 1. Brown and Crowell asserted the somewhat more precise result (for \(\mu = 2 \)) that \(A \) could be generated by 3 elements, of the form \((t_1 - 1)p_1(t_1), (t_2 - 1)p_2(t_2) \) and \(p_i(t_i) + p_2(t_2) - 1 \) where \(p_i(1) = 1 \), and that the \(i \)th longitude lay in \(G'' \) if and only if \(p_{3-i}(t_{3-i}) \) were a unit [2]. This follows readily from \(A = A_1 \cap A_2 \), where \(A_i \) is the annihilator of the \(i \)th longitude and equals \((t_i - 1, p_{3-i}(t_{3-i})) \) for some \(p_i \), as above.

2. Fox and Smythe conjectured that if the longitudes were in \(G'' \), then the link would be a boundary link [6]. H. W. Lambert has constructed a 2-component homology boundary link which is not a boundary link, as a counterexample to this conjecture [4]. (Figure 1 of his paper is incorrectly drawn: the shorter longitude of this example does not map to 0 in the Alexander module (via Crowell’s inclusion \(0 \rightarrow G'/G'' \rightarrow A(G) \) [1]) and hence this link is not such a counterexample.\(^1\)) Notice also that boundary links have the stronger (but less tractable?) property that the longitudes are in \((G_\omega')\) (where \(G_\omega = \bigcap_{n=1}^{\infty} G_n \) is the intersection of the terms of the lower central series). This follows from the construction of the \(\omega \)-covering by splitting the link complement along Seifert surfaces, as in [3].

3. If \(L \) is trivial then \(\mathcal{E}_k(L) = \Lambda \), but the converse is false, even for knots (\(\mu = 1 \)), for there exists nontrivial knots (for instance doubled knots with twist number 0) with Alexander polynomial 1 [5].

\textbf{References}

\textbf{Department of Pure Mathematics, School of General Studies, Australian National University, Canberra, A. C. T. 2600, Australia}

\(^1\)Lambert has advised me that his argument is based on a slightly different figure.