A stronger Borsuk-Ulam type theorem for proper $Z_{p}$-actions on $\textrm {mod}\ p$ homology $n$-spheres
HTML articles powered by AMS MathViewer
- by Jean E. Roberts
- Proc. Amer. Math. Soc. 72 (1978), 381-386
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507343-X
- PDF | Request permission
Abstract:
We obtain under a less restrictive hypothesis a Borsuk-Ulam type result of Munkholm’s in which the antipodal map is replaced by a ${Z_p}$-action on a cohomology n-sphere.References
- D. G. Bourgin, Modern algebraic topology, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1963. MR 0160201
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- P. E. Conner and E. E. Floyd, Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416–441. MR 163310, DOI 10.1090/S0002-9904-1960-10492-2
- André Haefliger, Points multiples d’une application et produit cyclique réduit, Amer. J. Math. 83 (1961), 57–70 (French). MR 120655, DOI 10.2307/2372720
- Hans Jørgen Munkholm, A Borsuk-Ulam theorem for maps from a sphere to a compact topological manifold, Illinois J. Math. 13 (1969), 116–124. MR 238324
- Hans Jørgen Munkholm, Borsuk-Ulam type theorems for proper $Z_{p}$-actions on ($\textrm {mod}$ $p$ homology) $n$-spheres, Math. Scand. 24 (1969), 167–185 (1970). MR 258025, DOI 10.7146/math.scand.a-10928
- N. E. Steenrod, Cohomology operations, Annals of Mathematics Studies, No. 50, Princeton University Press, Princeton, N.J., 1962. Lectures by N. E. Steenrod written and revised by D. B. A. Epstein. MR 0145525
- Wen-tsün Wu, Classes caractéristiques et $i$-carrés d’une variété, C. R. Acad. Sci. Paris 230 (1950), 508–511 (French). MR 35992
- Fred Cohen and J. E. Connett, A coincidence theorem related to the Borsuk-Ulam theorem, Proc. Amer. Math. Soc. 44 (1974), 218–220. MR 331374, DOI 10.1090/S0002-9939-1974-0331374-2
- Fred Cohen and Ewing L. Lusk, Coincidence point results for spaces with free $Z_{p}$-actions, Proc. Amer. Math. Soc. 49 (1975), 245–252. MR 372846, DOI 10.1090/S0002-9939-1975-0372846-5
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 381-386
- MSC: Primary 55M20; Secondary 54H25, 55M35
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507343-X
- MathSciNet review: 507343