Quickly unknotting topological spheres
HTML articles powered by AMS MathViewer
- by W. R. Brakes
- Proc. Amer. Math. Soc. 72 (1978), 413-416
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507349-0
- PDF | Request permission
Abstract:
Locally flat topological sphere and cell pairs of codimension at least three are shown to be unknotted by a simpler method than previously known.References
- W. R. Brakes, $k$-stability of homeomorphisms of Euclidean $n$-space, Proc. Cambridge Philos. Soc. 75 (1974), 175β183. MR 334219, DOI 10.1017/s0305004100048398
- Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113β115. MR 117694, DOI 10.1090/S0002-9904-1960-10420-X
- Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331β341. MR 133812, DOI 10.2307/1970177
- Robert Connelly, A new proof of Brownβs collaring theorem, Proc. Amer. Math. Soc. 27 (1971), 180β182. MR 267588, DOI 10.1090/S0002-9939-1971-0267588-7
- L. C. Glaser and T. M. Price, Unknotting locally flat cell pairs, Illinois J. Math. 10 (1966), 425β430. MR 196735
- Herman Gluck, Unknotting $S^{1}$ in $S^{4}$, Bull. Amer. Math. Soc. 69 (1963), 91β94. MR 142114, DOI 10.1090/S0002-9904-1963-10873-3
- C. Lacher, Locally flat strings and half-strings, Proc. Amer. Math. Soc. 18 (1967), 299β304. MR 212805, DOI 10.1090/S0002-9939-1967-0212805-1
- John Stallings, On topologically unknotted spheres, Ann. of Math. (2) 77 (1963), 490β503. MR 149458, DOI 10.2307/1970127
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 413-416
- MSC: Primary 57N35; Secondary 57N50
- DOI: https://doi.org/10.1090/S0002-9939-1978-0507349-0
- MathSciNet review: 507349