On finite simple groups with a self-centralization system of type $(2(n))$
HTML articles powered by AMS MathViewer
- by Pamela A. Ferguson
- Proc. Amer. Math. Soc. 72 (1978), 443-444
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509231-1
- PDF | Request permission
Abstract:
Let G denote a simple group with a self-centralization system of type $(2(n))$, where $n > 3$. Let ${X_1}$ denote an exceptional character of G, then ${X_1}(1) = kn + 2\varepsilon$ where $\varepsilon = \pm 1$. It is known that \[ |G| = nX_{1}(1)(X_{1}(1)-\varepsilon )(ln + 1) \] where l is a nonnegative integer. In this paper G is classified if $l = 0,\varepsilon = 1$ and ${X_1}(1)$ is odd.References
- Walter Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0219636
- Walter Feit and John G. Thompson, Finite groups which contain a self-centralizing subgroup of order 3, Nagoya Math. J. 21 (1962), 185β197. MR 142623, DOI 10.1017/S0027763000023825
- David M. Goldschmidt, $2$-fusion in finite groups, Ann. of Math. (2) 99 (1974), 70β117. MR 335627, DOI 10.2307/1971014
- Koichiro Harada, A characterization of the groups $LF(2,\,q)$, Illinois J. Math. 11 (1967), 647β659. MR 218443 G. Higman, Odd characterizations of finite simple groups, Lecture Notes, Univ. Michigan, Ann Arbor, Mich., 1968.
- Michio Suzuki, Finite groups with nilpotent centralizers, Trans. Amer. Math. Soc. 99 (1961), 425β470. MR 131459, DOI 10.1090/S0002-9947-1961-0131459-5
- John H. Walter, The characterization of finite groups with abelian Sylow $2$-subgroups, Ann. of Math. (2) 89 (1969), 405β514. MR 249504, DOI 10.2307/1970648
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 443-444
- MSC: Primary 20D06
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509231-1
- MathSciNet review: 509231