A Korovkin-type theorem in locally convex spaces
HTML articles powered by AMS MathViewer
- by Hans-O. Flösser
- Proc. Amer. Math. Soc. 72 (1978), 456-460
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509234-7
- PDF | Request permission
Abstract:
Let E be a locally convex M-space, $\emptyset \ne M$ a subset. The universal Korovkin-closure of M as well as the sequentially or stationary defined Korovkin-closures coincide with the space of M-harmonic elements and with the uniqueness closure of M.References
- Heinz Bauer, Theorems of Korovkin type for adapted spaces, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 4, 245–260 (English, with French summary). MR 358178, DOI 10.5802/aif.490
- H. Berens and G. G. Lorentz, Theorems of Korovkin type for positive linear operators on Banach lattices, Approximation theory (Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1973) Academic Press, New York, 1973, pp. 1–30. MR 0340913
- Klaus-Dieter Bierstedt, Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. I, J. Reine Angew. Math. 259 (1973), 186–210 (German). MR 318871, DOI 10.1515/crll.1973.259.186
- Klaus Donner, Korovkin theorems for positive linear operators, J. Approximation Theory 13 (1975), 443–450. MR 370008, DOI 10.1016/0021-9045(75)90027-1
- Claude Portenier, Espaces de Riesz, espaces de fonctions et espaces de sections, Comment. Math. Helv. 46 (1971), 289–313 (French). MR 291764, DOI 10.1007/BF02566846
- Helmut H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics, Vol. 3, Springer-Verlag, New York-Berlin, 1971. Third printing corrected. MR 0342978, DOI 10.1007/978-1-4684-9928-5
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039, DOI 10.1007/978-3-642-65970-6
- Manfred Wolff, Über die Korovkinhülle von Teilmengen in lokalkonvexen Vektorverbänden, Math. Ann. 213 (1975), 97–108 (German). MR 388037, DOI 10.1007/BF01343947
- M. Wolff, On the universal Korovkin closure of subsets in vector lattices, J. Approximation Theory 22 (1978), no. 3, 243–253. MR 470573, DOI 10.1016/0021-9045(78)90056-4
- Manfred Wolff, On the theory of approximation by positive operators in vector lattices, Functional analysis: surveys and recent results (Proc. Conf., Paderborn, 1976) North-Holland Math. Studies, Vol. 27; Notas de Mat., No. 63, North-Holland, Amsterdam, 1977, pp. 73–87. MR 0467112
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 456-460
- MSC: Primary 46A40; Secondary 46E99
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509234-7
- MathSciNet review: 509234