Local properties of quotient analytic spaces
HTML articles powered by AMS MathViewer
- by Kunio Takijima and Tadashi Tomaru
- Proc. Amer. Math. Soc. 72 (1978), 461-467
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509235-9
- PDF | Request permission
Abstract:
Let $T: = {\mathbf {C}}/{\mathbf {Z}}{\omega _1} + {\mathbf {Z}}{\omega _2}$ be a complex 1-torus and ${E_n}$ the set of all elliptic functions of order n. Then M. Namba showed that ${E_n}$ is a 2n-dimensional complex manifold. Let $\operatorname {Aut} T$ be the automorphism group of T, then $\operatorname {Aut} T$ is a 1-dimensional compact complex Lie group and the orbit space ${E_n}/{\operatorname {Aut}} T$ is an analytic space. In this paper, we shall show that ${E_n}/{\operatorname {Aut}} T$ has only rational singularities and if $n \geqslant 5,{E_n}/{\operatorname {Aut}} T$ is rigid.References
- D. Burns, On rational singularities in dimensions $>2$, Math. Ann. 211 (1974), 237–244. MR 364672, DOI 10.1007/BF01350716
- Henri Cartan, Quotient d’un espace analytique par un groupe d’automorphismes, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 90–102 (French). MR 0084174
- Harald Holmann, Quotienten komplexer Räume, Math. Ann. 142 (1960/61), 407–440 (German). MR 120665, DOI 10.1007/BF01450934
- Harald Holmann, Komplexe Räume mit komplexen Transformations-gruppen, Math. Ann. 150 (1963), 327–360 (German). MR 150789, DOI 10.1007/BF01470762
- Makoto Namba, Moduli of open holomorphic maps of compact complex manifolds, Math. Ann. 220 (1976), no. 1, 65–76. MR 397036, DOI 10.1007/BF01354530
- David Prill, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375–386. MR 210944
- Michael Schlessinger, Rigidity of quotient singularities, Invent. Math. 14 (1971), 17–26. MR 292830, DOI 10.1007/BF01418741
- Michael Schlessinger, On rigid singularities, Rice Univ. Stud. 59 (1973), no. 1, 147–162. MR 344519
- Kunio Takijima and Tetsutaro Suzuki, On the trivial extension of equivalence relations on analytic spaces, Trans. Amer. Math. Soc. 219 (1976), 369–377. MR 412463, DOI 10.1090/S0002-9947-1976-0412463-7
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 461-467
- MSC: Primary 32C40; Secondary 32G11
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509235-9
- MathSciNet review: 509235