LOCAL PROPERTIES OF QUOTIENT ANALYTIC SPACES

KUNIO TAKIJIMA AND TADASHI TOMARU

ABSTRACT. Let \(T := \mathbb{C}/\mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \) be a complex 1-torus and \(E_n \) the set of all elliptic functions of order \(n \). Then M. Namba showed that \(E_n \) is a 2\(n \)-dimensional complex manifold. Let \(\text{Aut} T \) be the automorphism group of \(T \), then \(\text{Aut} T \) is a 1-dimensional compact complex Lie group and the orbit space \(E_n/\text{Aut} T \) is an analytic space. In this paper, we shall show that \(E_n/\text{Aut} T \) has only rational singularities and if \(n > 5 \), \(E_n/\text{Aut} T \) is rigid.

1. Introduction. Let \(M \) be a complex manifold and \(G \) a properly discontinuous transformation group on \(M \). Then H. Cartan [2] showed that the quotient space \(M/G \) is a normal analytic space and D. Burns [1] has proved that \(M/G \) is rational. Moreover M. Schlessinger [7], [8] showed that if \(\text{codim} \ F(G) > 3 \), \(M/G \) has only rigid singularities, where

\[
F(G) := \bigcup_{g \in G - \{e\}} F(g), F(g) := \{ x \in M; gx = x \}
\]

is the set of all fixed points.

In this paper, let \(M \) be also a complex manifold and \(G \) a complex Lie transformation group whose action is proper on \(M \). Then H. Holmann [4] proved that the quotient space \(M/G \) is a normal analytic space. We shall show the following

Theorem 1. \(M/G \) has only rational singularities. Moreover if \(\text{codim} \ S(M/G) > 3 \), \(M/G \) is rigid, where \(S(M/G) \) is the set of all singular points of \(M/G \).

Let \(\omega_1, \omega_2 \in \mathbb{C}; \ \text{Im}(\omega_2/\omega_1) > 0 \), \(T := \mathbb{C}/\mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \) be a complex 1-torus and \(E_n \) the set of all elliptic functions of order \(n \). Then \(E_n \) is a 2\(n \)-dimensional complex manifold [5] and the automorphism group \(\text{Aut} T \) acts on \(E_n \) naturally. Then we have

Theorem 2. \(E_n/\text{Aut} T \) is rational and if \(n > 5 \), \(E_n/\text{Aut} T \) has only rigid singularities.

2. The proof of Theorem 1. We shall give some definitions. Let \((X, \mathcal{O}_X)\) be an analytic space and \(\pi: (\tilde{X}, \mathcal{O}_{\tilde{X}}) \to (X, \mathcal{O}_X) \) a resolution of singularities of \(X \). Then \(x \in X \) is called a rational singularity if \((R^i \pi_* \mathcal{O}_{\tilde{X}})_x = 0 \) for any \(i > 0 \)

Received by the editors December 13, 1977 and, in revised form, March 27, 1978.

Key words and phrases. Quotient analytic space, rational singularity, rigid singularity, elliptic function.
Let \(R \) be an equivalence relation on \(X \). We identify the graph of \(R \) with \(R \). Then \(R \) is called open (resp. proper, finite) if the natural projection \(p_1: R \to X \) is open (resp. proper, finite). And \(R \) is called analytic if the graph \(R \) is an analytic set in \(X \times X \) (cf. [4], [9]).

Let \(M \) be a complex manifold and \(G \) a complex Lie transformation group on \(M \). Then \(G \) is called proper on \(M \) if the graph mapping \(\Psi: G \times M \to M \times M, \Psi(g, x) := (gx, x) \) is proper. (This is different from the above definition that an equivalence relation \(R \) is proper.) Let \(G(x) := \{ gx; g \in G \} \) be the orbit through \(x \) and \(G_x := \{ g \in G; gx = x \} \) an isotropy group at \(x \).

We shall prove Theorem 1 and its proof is essentially owing to the technique by H. Holmann [3], [4]. Let \(\Phi: G \times M \to M, \Phi(g, x) := gx \) be the natural holomorphic mapping. Then \(G(x) = \Phi(G \times \{ x \}) \) is a complex submanifold of \(M \) and biholomorphic to \(G/G_x \). Since \(G \) is proper on \(M \), \(M/G \) is Hausdorff with respect to the quotient topology. Hence from Hilfssatz 7 of [4], for any \(x \in M \) there exist an open connected neighborhood \(U \subset M \) of \(x \) and a submanifold \(N \subset U \) such that

1. \(x \in N \),
2. \(U = (G(x) \cap U) \times N \),
3. \(G(y) \cap U = (G(x) \cap U) \times N_y \) for any \(y \in N \), where \(N_y := G(y) \cap N \) is finite and \(N_x = \{ x \} \). Let \(R \) be an equivalence relation on \(N \) defined by \(R(y) := N_y \) for any \(y \in N \). Then \(R \) is open proper finite analytic (if we choose \(U \) small enough) and \(M/G \) is locally isomorphic to \(N/R \) (cf. the proof of Satz 15 in [4]).

For any \(g \in G_x \), there exists an open connected neighborhood \(V \subset N \) of \(x \) such that \(g' := qg: V \to g'(V) \subset N \) is biholomorphic, where \(q: U \to N \) is the natural projection and the inverse of \(g' \) is

\[(g')^{-1} := q^{-1} \cdot g^{-1}.\]

Let \(G'(V) \) be the set of all biholomorphic mappings on \(V \) induced from \(G_x \) for any connected neighborhood \(V \subset N \) of \(x \). Since \(G \) is proper on \(M \), there exists an open connected neighborhood \(V \subset N \) of \(x \) such that \(G'(V) \) is a finite transformation group on \(V \) and \(R \) coincides with the equivalence relation induced by \(G'(V) \) on \(V \) (cf. the proof of Satz 19 in [4]). Therefore \(M/G \) is locally isomorphic to \(V/G'(V) \) and so \(M/G \) has only rational singularities. If we show the following lemma, the proof of Theorem 1 is complete.

Lemma 1. Let \(\Gamma \) be a finite subgroup of \(\text{GL}(n, \mathbb{C}) \). If \(\operatorname{codim} S(\mathbb{C}^n/\Gamma) > 3 \), \(\mathbb{C}^n/\Gamma \) is rigid.

Proof. Let \(\Gamma_0 \) be the normal subgroup of \(\Gamma \) generated by reflections, where \(g \in \text{GL}(n, \mathbb{C}) \) is called a reflection if \(g \) is order-finite and \(\operatorname{codim} F(g) = 1 \).
Then C^n/Γ_0 is biholomorphic to C^n and Γ/Γ_0 acts on C^n/Γ_0 naturally. Moreover $C^n/\Gamma \cong (C^n/\Gamma_0)/(\Gamma/\Gamma_0)$ and Γ/Γ_0 has no reflection (cf. [6]). Thus we may assume that Γ has no reflection. Then $p(F(\Gamma)) = S(C^n/\Gamma)$, where p: $C^n \rightarrow C^n/\Gamma$ is the projection.

In fact, $p(F(\Gamma)) \supseteq S(C^n/\Gamma)$ is clear. Let $x \in C^n$ and $p(x) \notin S(C^n/\Gamma)$, then there exists a nonsingular neighborhood $U \subset C^n/\Gamma$ of $p(x)$ such that p: $p^{-1}(U) \rightarrow U$ is a finite covering between complex manifolds. We have

$$F(\Gamma) \cap p^{-1}(U) = \{ t \in p^{-1}(U); Jp(t) = 0 \},$$

where Jp is the Jacobian of p. Since codim $F(\Gamma) > 2$, $F(\Gamma) \cap p^{-1}(U)$ must be empty. Thus $x \notin F(\Gamma)$. Therefore codim $F(\Gamma) = \text{codim} S(C^n/\Gamma) \geq 3$ and so C^n/Γ is rigid.

Remark. If G is not proper on M, locally M/G is not always isomorphic to $V/G'(V)$.

3. The proof of Theorem 2. Since $\text{Aut} T$ is compact, $\text{Aut} T$ is proper on E^n. Hence the first part of Theorem 2 is straightforward from Theorem 1. Thus we must calculate codim $S(E^n/\text{Aut} T)$.

Let S_n be the n-symmetric group. Then $S_n \times S_n$ acts on C^{2n+1} as follows:

$$(S_n \times S_n) \times C^{2n+1} \rightarrow C^{2n+1},$$

$$(g_1, g_2, \alpha, \beta, \gamma) \mapsto (g_1 \alpha, g_2 \beta, \gamma),$$

where $\alpha = (\alpha_1, \ldots, \alpha_n), \beta = (\beta_1, \ldots, \beta_n)$. We define

$$\phi: C^{2n+1} \rightarrow C^{2n+1},$$

$$\phi(\alpha, \beta, \gamma) := (\sigma_1(\alpha), \ldots, \sigma_n(\alpha), \sigma_1(\beta), \ldots, \sigma_n(\beta), \gamma),$$

where σ_i is the i-fundamental symmetric function $(i = 1, \ldots, n)$. Then we have $C^{2n+1}/(S_n \times S_n) \cong \phi(C^{2n+1}) = C^{2n+1}$.

For $\omega_1, \omega_2 \in C$; $\text{Im}(\omega_2/\omega_1) > 0$, we put $\Delta := Z\omega_1 + Z\omega_2$, $\Delta^* := \Delta - \{0\}$ and

$$\tilde{S}_\Omega := \left\{ (\alpha, \beta, \gamma) \in C^{2n+1}; \sum_{i=1}^n \sigma_i - \sum_{i=1}^n \beta_i = \Omega, \gamma \neq 0, \alpha_i - \beta_j \notin \Delta, \alpha_i - \alpha_j \notin \Delta^*, \beta_i - \beta_j \notin \Delta^* (i,j = 1, \ldots, n) \right\}$$

for $\Omega \in \Delta$. Since \tilde{S}_Ω is an $S_n \times S_n$-invariant complex manifold,

$$S_\Omega := \phi(\tilde{S}_\Omega) = \{(x, y, z) \in C^{2n+1}; x_1 - y_1 = \Omega, z \neq 0, \alpha_i - \beta_j \notin \Delta, \alpha_i - \alpha_j \notin \Delta^*, \beta_i - \beta_j \notin \Delta^* (i,j = 1, \ldots, n) \}$$

is also a $2n$-dimensional complex manifold, where α_i, β_j are roots of

$$X^n - x_1 X^{n-1} + x_2 X^{n-2} + \cdots + (-1)^n x_n = 0,$$ \hspace{1cm} (1)

$$X^n - y_1 X^{n-1} + y_2 X^{n-2} + \cdots + (-1)^n y_n = 0$$ \hspace{1cm} (2)

respectively. And $\tilde{S} := \bigcup_{\Omega \in \Delta} \tilde{S}_\Omega, S := \bigcup_{\Omega \in \Delta} S_\Omega$ are complex manifolds.
By the classical theory of elliptic functions, for any \(f(w) \in E_n \), let \(\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_n \) be zeroes and poles of \(f(w) \) respectively, then
\[
\sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \beta_i = \Omega \in \Delta,
\]
\[
\Omega = p_0\omega_1 + q_0\omega_2,
\]
\[
f(w) = \gamma \exp 2(p_0\eta_1 + q_0\eta_2)w \prod_{i=1}^{n} \frac{\sigma(w - \alpha_i)}{\sigma(w - \beta_i)},
\]
where \(\eta_j := \zeta(\frac{1}{2}\omega_2)(j = 1, 2) \) and \(\sigma, \zeta \) are the Weierstrass functions. We define \(\tilde{F}: \tilde{S} \to E_n \)
\[
\tilde{F}(\alpha, \beta, \gamma) := \gamma \exp 2(p_0\eta_1 + q_0\eta_2)w \prod_{i=1}^{n} \frac{\sigma(w - \alpha_i)}{\sigma(w - \beta_i)},
\]
where
\[
\sum_{i=1}^{n} \alpha_i - \sum_{i=1}^{n} \beta_i = p_0\omega_1 + q_0\omega_2 \in \Delta.
\]
Since \(\tilde{F} \) is \(S_n \times S_n \)-invariant, \(\tilde{F}: \tilde{S} \to E_n \) induces \(F: S \to E_n \)
\[
F(x, y, z) := z \exp 2(p_0\eta_1 + q_0\eta_2)w \prod_{i=1}^{n} \frac{\sigma(w - \alpha_i)}{\sigma(w - \beta_i)},
\]
where \(x_1 - y_1 = p_0\omega_1 + q_0\omega_2 \in \Delta \) and \(\alpha_i, \beta_i \) are roots of (1), (2) respectively. Then we can show the following lemma (cf. [5, Remark, p. 75]).

Lemma 2. \(F: S \to E_n \) is surjective open holomorphic and locally biholomorphic.

We shall calculate \(\text{codim} S(E_n/\text{Aut } T) \) using this locally biholomorphic mapping \(F \). Here we assume that \(\omega_2/\omega_1 \neq e^{\pi i/2}, e^{2\pi i/3} \) under the modular group. Then \(\text{Aut } T \) has two connected components \(T_0, T_1 \) and \(T_0 \) is isomorphic to \(T \) as Lie group. We put
\[
g_1(x_1, x_2, x_3, n) := -x_3 + \frac{n-2}{n} x_1 x_2 - \frac{(n-1)(n-2)}{3n^2} x_3^3,
\]
\[
g_2(x_1, x_2, x_3, x_4, x_5, n) := -x_5 + \frac{n-4}{n} x_1 x_4 - \frac{(n-3)(n-4)}{n^2} x_1^2 x_3
\]
\[
+ \frac{2(n-2)(n-3)(n-4)}{3n^3} x_1^2 x_2 - \frac{(n-1)(n-2)(n-3)(n-4)}{5n^4} x_1^5,
\]
\[
\rho(x, \lambda) := \lambda^n + x_1\lambda^{n-1} + \cdots + x_{n-1}\lambda + x_n, x = (x_1, \ldots, x_n),
\]
\[
a_i(x, \lambda) := \frac{1}{(n-i)!} \rho^{(n-i)}(x, \lambda)
\]
\[
= \binom{n}{i} \lambda^i + \binom{n-1}{i-1} x_1 \lambda^{i-1} + \cdots + (n-(i-1)) x_{i-1} \lambda + x_i,
\]
\[
a'_i(x, \lambda) := (-1)^i a_i(x, \lambda), \quad t := - (\lambda + 2x_1/n).
Then we have the following lemma by long elementary calculation.

Lemma 3.

\[a'(x, \lambda) = a(x, t), \quad a''(x, \lambda) = a_2(x, t), \]
\[a''(x, \lambda) = a_3(x, t) + 2g_1(x_1, x_2, x_3, n), \]
\[a_4'(x, \lambda) = a_4(x, t) + 2(n-3)(t + x_1/n)g_1(x_1, x_2, x_3, n), \]
\[a_5'(x, \lambda) = a_5(x, t) + (n-3)(n-4)(t^2 + 2x_1t/n)g_1(x_1, x_2, x_3, n) \]
\[+ 2g_2(x_1, x_2, x_3, x_4, x_5, n), \]
\[a_6'(x, \lambda) = a_6(x, t) + (n-3)(n-4)\left(\frac{n-5}{3}t^3 + \frac{n-5}{n}x_1t^2 - \frac{1}{3n^2}x_1^3 \right)g_1 \]
\[\cdot (x_1, x_2, x_3, n) + 2(n-5)(t + x_1/n)g_2(x_1, x_2, x_3, x_4, x_5, n). \]

In general,

\[a_i'(x, \lambda) = a_i(x, t) + \sum_{j=0}^{i-3} \sum_{k=0}^{i-j}(\sum_{k=0}^{i-j}(-1)^k\binom{n-k}{i-j-k}\left(\frac{2}{n} x_1 \right)^{i-j-k} \]
\[\cdot x_k - \binom{n-i+j}{j} x_i \cdot t^j \]
\[(i = 1, \ldots, n). \]

Let

\[A_n := \{(x, y, z) \in S_0; a_i'(x, -2x_1/n) = x_i, \]
\[a_i'(y, -2y_1/n) = y_i (i = 1, \ldots, n)\}. \]

(If \(i = 1, 2, a_i'(x, -2x_1/n) = x_i \) and \(a_i'(y, -2y_1/n) = y_i \) are always true.) Then \(A_n = \{(x, y, z) \in S_0; g_1(x_1, x_2, x_3, n) = g_1(y_1, y_2, y_3, n) = 0 \} \) for \(n = 3, 4 \) and \(A_n = \{(x, y, z) \in S_0; g_1(x_1, x_2, x_3, n) = g_2(x_1, x_2, x_3, x_4, x_5, n) = g_1(y_1, y_2, y_3, n) = g_2(y_1, y_2, y_3, y_4, y_5, n) = 0 \} \) for \(n = 5, 6. \) Thus if \(n > 5 \), we have \(\text{codim} A_n \geq 4. \)

Now we shall prove the rest of Theorem 2. For any \(f(w) \in E_n \), there exists \((\alpha, \beta, \gamma) \in S_0 \) such that

\[f(w) = \gamma \exp 2(p_0 \eta_1 + q_0 \eta_2)w \prod_{i=1}^n \frac{\sigma(w - \alpha_i)}{\sigma(w - \beta_i)}, \]
\[\Omega = p_0 \omega_1 + q_0 \omega_2. \]

Let \(B_n := \{(x, y, z) \in S; (1) \) and \((2) \) have no simple root\}, then \(B_n \) is an analytic set in \(S \). If \((a, b, \gamma) := \phi(\alpha, \beta, \gamma) \in (S - B_n) \cup S_0 \), we may assume that \((a, b, \gamma) \in S_0 \). Then
\[f(w) = \gamma \prod_{i=1}^{n} \frac{\sigma(w - \alpha_i)}{\sigma(w - \beta_i)}; \quad \alpha_i = b_i. \]

For any \(a(w) \in T_0; a(w) = w - \lambda \), we have
\[f \circ a(w) = \gamma \prod_{i=1}^{n} \frac{\sigma(w - \lambda - \alpha_i)}{\sigma(w - \lambda - \beta_i)}. \]

Hence \((\lambda + \alpha, \lambda + \beta, \gamma) \in \tilde{S}_0 \cap F^{-1}(f \circ a(w)) \) and \(\phi(\lambda + \alpha, \lambda + \beta, \gamma) = (a_1(a, \lambda), \ldots, a_n(a, \lambda), a_1(b, \lambda), \ldots, a_n(b, \lambda), \gamma) \in S_0 \cap F^{-1}(f \circ a(w)). \)

For any \(a(w) \in T_1; a(w) = -w - \lambda \), we have
\[f \circ a(w) = \gamma \prod_{i=1}^{n} \frac{\sigma(w + \lambda + \alpha_i)}{\sigma(w + \lambda + \beta_i)}. \]

Hence \((-\lambda - \alpha, -\lambda - \beta, \gamma) \in \tilde{S}_0 \cap F^{-1}(f \circ a(w)) \) and \(\phi(-\lambda - \alpha, -\lambda - \beta, \gamma) = (a_1(a, \lambda), \ldots, a_n(a, \lambda), a_1(b, \lambda), \ldots, a_n(b, \lambda), \gamma) \in S_0 \cap F^{-1}(f \circ a(w)). \) Namely the orbit \((\text{Aut } T)(f(w)) \) is locally described by
\[\{(a_1(a, \lambda), \ldots, a_n(a, \lambda), a_1(b, \lambda), \ldots, a_n(b, \lambda), \gamma); \lambda \in T \} \cup \{(a_1'(a, \lambda), \ldots, a_n'(a, \lambda), a_1'(b, \lambda), \ldots, a_n'(b, \lambda), \gamma); \lambda \in T \} \text{ in } S_0. \]

Hence using Lemma 3, we can show that \((\text{Aut } T)_f(w) = \{w\} \) if \((a, b, \gamma) \notin A_n. \) Then \(E_n/\text{Aut } T \) is nonsingular at \(p(f(w)) \) by the proof of Theorem 1. If \(n > 5, \) we have \(\text{codim } A_n > 4 \) and \(\text{codim } B_n > n > 5. \) Therefore \(\text{codim } S(E_n/\text{Aut } T) > 3 \) and so \(E_n/\text{Aut } T \) is rigid.

In the case \(\omega_2/\omega_1 \equiv e^{\pi i/2} \text{ or } e^{2\pi i/3}, \) we can also show that if \(n > 5, \) \(\text{codim } S(E_n/\text{Aut } T) > 3 \) by almost the same argument as above.

Example. Let \((w) \) be the Weierstrass \(e \)-function. Then
\[\varphi(w) = \frac{1}{\sigma(w - \alpha)} \frac{\sigma(w - \alpha)^2 \sigma(w + \alpha)^2}{\sigma(w)^4} \in E_4(\varphi(\alpha) = 0) \]

and \((\text{Aut } T)_{\varphi(w)^2} = \{w, -w\}. \) Thus \((\alpha, \alpha, -\alpha, -\alpha, 0, 0, 0, 0, 1/\sigma(\alpha)^4) \in \tilde{S}_0 \cap F^{-1}(\varphi(w)^2) \) and \((0, -2\alpha^2, 0, \alpha^4, 0, 0, 0, 0, 1/\sigma(\alpha)^4) \in S_0 \cap F^{-1}(\varphi(w)^2). \)

By Lemma 3 and the proof of Theorems 1 and 2, we may take \(N = \{x_1 = y_1 = 0\} \subset S_0 \) and for any \((x, y, z) = (0, x_2, x_3, x_4, 0, y_2, y_3, y_4, z) \in N, \) the orbit \((\text{Aut } T)(F(x, y, z)) \) is locally described in \(S_0 \) as follows:
\[\{(4\lambda, 6\lambda^2 + x_2, 4\lambda^3 + 2x_2\lambda + x_3, \lambda^4 + x_2\lambda^2 + x_3\lambda + x_4, 4\lambda, 6\lambda^2 + y_2, \}
\[4\lambda^3 + 2y_2\lambda + y_3, \lambda^4 + y_2\lambda^2 + y_3\lambda + y_4, z); \lambda \in T \}
\]
\[\cup \{-(-4\lambda, 6\lambda^2 + x_2, -4\lambda^3 - 2x_2\lambda - x_3, \lambda^4 + x_2\lambda^2 + x_3\lambda + x_4, -4\lambda, \}
\[6\lambda^2 + y_2, -4\lambda^3 - 2y_2\lambda - y_3, \lambda^4 + y_2\lambda^2 + y_3\lambda + y_4, z); \lambda \in T \}. \]

Hence \(N_{(x,y,z)} = \{(0, x_2, x_3, x_4, 0, y_2, y_3, y_4, z), (0, x_2, -x_3, x_4, 0, y_2, -y_3, y_4, z)\}. \) Therefore \(E_4/\text{Aut } T \) is isomorphic to \(\{w^2 - uw = 0\} \times C^5 \subset C^8 \) at \(p \) \((\varphi(w)^2) \) and so not rigid.
References