On the local spectra of seminormal operators
HTML articles powered by AMS MathViewer
- by Kevin F. Clancey
- Proc. Amer. Math. Soc. 72 (1978), 473-479
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509237-2
- PDF | Request permission
Abstract:
Two theorems on the local spectra of seminormal operators are deduced. In the first theorem it is shown that when T is hyponormal any solution of the equation $(T - \lambda )x(\lambda ) = x$ on an open set in the plane is necessarily analytic. The second theorem establishes the existence of vectors with small local spectra for a cohyponormal operator with a finite rank self-commutator.References
- Richard W. Carey and Joel D. Pincus, Mosaics, principal functions, and mean motion in von Neumann algebras, Acta Math. 138 (1977), no. 3-4, 153–218. MR 435901, DOI 10.1007/BF02392315
- B. E. Johnson, Continuity of linear operators commuting with continuous linear operators, Trans. Amer. Math. Soc. 128 (1967), 88–102. MR 213894, DOI 10.1090/S0002-9947-1967-0213894-5
- M. G. Kreĭn, On perturbation determinants and a trace formula for unitary and self-adjoint operators, Dokl. Akad. Nauk SSSR 144 (1962), 268–271 (Russian). MR 0139006
- C. R. Putnam, Ranges of normal and subnormal operators, Michigan Math. J. 18 (1971), 33–36. MR 276810
- C. R. Putnam, Hyponormal contractions and strong power convergence, Pacific J. Math. 57 (1975), no. 2, 531–538. MR 380493
- M. Radjabalipour, Ranges of hyponormal operators, Illinois J. Math. 21 (1977), no. 1, 70–75. MR 448140
- Joseph G. Stampfli, A local spectral theory for operators. V. Spectral subspaces for hyponormal operators, Trans. Amer. Math. Soc. 217 (1976), 285–296. MR 420325, DOI 10.1090/S0002-9947-1976-0420325-4
- Joseph G. Stampfli and Bhushan L. Wadhwa, On dominant operators, Monatsh. Math. 84 (1977), no. 2, 143–153. MR 458225, DOI 10.1007/BF01579599
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 473-479
- MSC: Primary 47B20
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509237-2
- MathSciNet review: 509237