A note on Segal algebras on Euclidean spaces
HTML articles powered by AMS MathViewer
- by Hwai Chiuan Wang
- Proc. Amer. Math. Soc. 72 (1978), 513-518
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509245-1
- PDF | Request permission
Abstract:
In this note, we construct and study Segal algebras from three important operators on Euclidean spaces - the Hardy-Littlewood maximal function, the Hilbert transform, and the Sobolov operator.References
- Hans G. Feichtinger, Colin C. Graham, and Eric H. Lakien, Nonfactorization in commutative, weakly selfadjoint Banach algebras, Pacific J. Math. 80 (1979), no.ย 1, 117โ125. MR 534699
- Richard R. Goldberg, Recent results on Segal algebras, Functional analysis and its applications (Internat. Conf., Eleventh Anniversary of Matscience, Madras, 1973; dedicated to Alladi Ramakrishnan), Lecture Notes in Math., Vol. 399, Springer, Berlin, 1974, pp.ย 220โ229. MR 0404987
- Hans Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. MR 0306811 โ, ${L^1}$-algebra and Segal algebras, Lecture Notes in Math., vol. 231, Springer-Verlag, Berlin, 1971.
- M. Riemersma, On some properties of normed ideals in $L^{1}(G)$, Indag. Math. 37 (1975), 265โ272. Nederl. Akad. Wetensch. Proc. Ser. A 78. MR 0380270
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Hwai Chiuan Wang, Homogeneous Banach algebras, Lecture Notes in Pure and Applied Mathematics, Vol. 29, Marcel Dekker, Inc., New York-Basel, 1977. MR 0458055
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 513-518
- MSC: Primary 43A15; Secondary 42B25, 43A32
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509245-1
- MathSciNet review: 509245