THE HYPERINVARIANT SUBSPACE LATTICE OF
A CONTRACTION OF CLASS C_0

PEI YUAN WU

Abstract. It is shown that if T is a C_0 contraction with finite defect
indices, then Hyperlat T is (lattice) generated by those subspaces which are
either $\ker \psi(T)$ or $\text{ran} \xi(T)$, where ψ and ξ are scalar-valued inner
functions.

For a bounded linear operator T on a complex Hilbert space H, Hyper-
lat T denotes the lattice of all hyperinvariant subspaces for T, that is, the
lattice of those subspaces which are invariant for all operators commuting
with T. Recently, Fillmore, Herrero and Longstaff [1] showed that on a
finite-dimensional space H, Hyperlat T is (lattice) generated by those
subspaces which are either $\ker p(T)$ or $\text{ran} q(T)$, where p and q are
polynomials. In this note we generalize this to the following

Theorem. Let T be a contraction of class C_0 with finite defect indices acting
on a separable Hilbert space. Then Hyperlat T is (lattice) generated by those
subspaces which are either $\ker \psi(T)$ or $\text{ran} \xi(T)$, where ψ and ξ are scalar-
valued inner functions.

Recall that a contraction $T (\|T\| < 1)$ is of class C_0 if $T^*x \to 0$ for all x.
The defect indices of T are, by definition, $d_T = \text{rank}(1 - T^*T)^{1/2}$ and $d_{T^*} = \text{rank}(1 - TT^*)^{1/2}$. If T is of class C_0, then $d_T < d_{T^*}$. For operators T, T'
acting on H, H', respectively, $T \sim T'$ means that there exists a family of
operators $\{X_a\}$ from H to H' such that (i) for each α, X_a is one-to-one, (ii)
$\bigvee_a X_a H = H'$, and (iii) for each $\alpha, X_a T = T'X_a$. If $T \sim T'$ and $T' \sim T$,
then T, T' are said to be completely injection-similar, and this is denoted by
$T \sim T$. For contractions of class C_0 and with $d_T = m < \infty, d_{T^*} = n < \infty$,
there has been developed a Jordan model which is, in a certain sense,
alogous to the Jordan model for finite matrices. More specifically, if T is
such a contraction then it is completely injection-similar to a uniquely
determined Jordan operator of the form

$$S(\psi_1) \oplus \cdots \oplus S(\psi_k) \oplus S_{n-m},$$

Received by the editors July 19, 1977 and, in revised form, January 25, 1978.

Key words and phrases. C_0 contraction, hyperinvariant subspace.

This research was partially supported by the National Science Council of Taiwan, Republic of
China.

© American Mathematical Society 1978
where \(\varphi_i \)'s are nonconstant inner functions satisfying \(\varphi_{i-1} | \varphi_i \), \(S(\varphi_i) \) denotes the operator on \(H^2 \otimes \varphi_i \otimes H^2 \) which is the compression of the multiplication by \(z \) to the space \(H^2 \otimes \varphi_i \otimes H^2, i = 1, \ldots, k \), and \(S_{n-m} \) denotes the unilateral shift operator on \(H^2_{n-m} \). For more details, the readers are referred to [3].

We first prove our theorem for the case when \(T \) is a Jordan operator.

Lemma 1. Let \(T = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k) \) be a Jordan operator. Then Hyperlat \(T \) is (lattice) generated by those subspaces which are either \(\ker \psi(T) \) or \(\operatorname{ran} \xi(T) \), where \(\psi \) and \(\xi \) are scalar-valued inner functions.

Proof. Let \(K \in \text{Hyperlat } T \) and for \(i = 1, \ldots, k \), let \(T_i = S(\varphi_i) \). Uchiyama [4] showed that \(K \) corresponds to a regular factorization

\[
\begin{bmatrix}
\varphi_1 & 0 \\
\vdots & \ddots \\
0 & \varphi_k
\end{bmatrix}
\begin{bmatrix}
\xi_1 & 0 \\
\vdots & \ddots \\
0 & \xi_k
\end{bmatrix}
\begin{bmatrix}
\psi_1 & 0 \\
\vdots & \ddots \\
0 & \psi_k
\end{bmatrix}
\]

of the characteristic function

\[
\begin{bmatrix}
\varphi_1 & 0 \\
\vdots & \ddots \\
0 & \varphi_k
\end{bmatrix}
\]

of \(T \), where \(\xi, \psi \) satisfy \(\xi_{i-1} | \xi_i, \psi_{i-1} | \psi_i, i = 2, \ldots, k \). Also

\[
K = \sum_{i=1}^{k} \bigoplus (\xi_i H^2 \otimes \varphi_i H^2).
\]

We claim that \(K = \bigvee_{i=1}^{k} [\ker \psi_i(T) \cap \operatorname{ran} \xi_i(T)] \).

Since for each \(i \), \(\xi_i H^2 \otimes \varphi_i H^2 = \ker \psi_i(T) = \operatorname{ran} \xi_i(T) \), one inclusion is trivial. To prove the other, fix \(j, 1 < j < k \), and let \(x = \sum_{i=1}^{k} \bigoplus x_i \) be an element in \(\ker \psi_j(T) \cap \operatorname{ran} \xi_j(T) \). Let \(\{ y_n = \sum_{i=1}^{k} \bigoplus y_{in} \} \) be a sequence of vectors such that \(\xi_j(T)y_n \to x \) in norm. Thus for each \(i \), we have \(\xi_j(T_i)y_{in} \to x_i \). For \(i < j \), \(\xi_i | \xi_j \), and therefore there is an inner \(\rho_i \) such that \(\xi_j = \xi_i \rho_i \). Hence \(\xi_j(T_i)\rho_i(T_i)y_{in} = \xi_i(T_i)y_{in} \to x_i \), which implies \(x_i \in \operatorname{ran} \xi_i(T) = \xi_i H^2 \otimes \varphi_i H^2 \).

On the other hand, for \(j < i \), \(\psi_j | \psi_i \), and therefore there is an inner \(\omega_i \) such that \(\psi_j = \omega_i \psi_i \). Hence \(\psi_i(T_j)x_i = \omega_i(T_j)\psi_j(T_j)x_i = 0 \), which implies \(x_i \in \ker \psi_i(T) \).

We remark that in the preceding proof we actually showed that

\[
K = \ker \psi_1(T) \bigvee \left[\bigvee_{i=2}^{k-1} (\ker \psi_i(T) \cap \operatorname{ran} \xi_i(T)) \right] \bigvee \operatorname{ran} \xi_k(T),
\]

since for \(j = 1, k \), we only used the assumptions \(x \in \ker \psi_1(T) \) and \(x \in \operatorname{ran} \xi_k(T) \) to prove the assertion.

Lemma 2. Let \(T = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k) \oplus S_{n-m} \) be a Jordan operator.
Then Hyperlat T is (lattice) generated by those subspaces which are either $\ker \psi(T)$ or $\overline{\text{ran } \xi(T)}$, where ψ and ξ are scalar-valued inner functions.

Proof. Let $S = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k)$ and $H = (H^2 \oplus \varphi_1 H^2) \oplus \cdots \oplus (H^2 \oplus \varphi_k H^2)$. Uchiyama showed in [5] that the hyperinvariant subspaces of T must be of the form $K_1 \oplus K_2$, where $K_1 \subseteq H$, $K_2 \subseteq H^2_{n-m}$ are hyperinvariant for S, S^\wedge_{n-m}, respectively, such that either $K_2 = 0$ or there exists an inner function φ such that $K_2 = \varphi H^2_{n-m}$ and $K_1 \supseteq \varphi(S)H$. Note that for any inner function φ, $\ker \varphi(S^\wedge_{n-m}) = 0$ and $\text{ran } \varphi(S^\wedge_{n-m}) = \varphi H^2_{n-m}$. Thus by Lemma 1 we can easily check that if $K_2 = 0$ then

$$K_1 \oplus K_2 = K_1 \oplus 0 = \bigvee_{i=1}^k \left(\ker \psi_i(T) \cap \overline{\text{ran } \xi_i(T)} \right),$$

otherwise

$$K_1 \oplus K_2 = \overline{\text{ran } \psi(T)} \vee \left[\bigvee_{i=1}^k \left(\ker \psi_i(T) \cap \overline{\text{ran } \xi_i(T)} \right) \right].$$

This proves our assertion.

Proof of Theorem. Let T be completely injection-similar to its Jordan model $T' = S(\varphi_1) \oplus \cdots \oplus S(\varphi_k) \oplus S^\wedge_{n-m}$, and suppose that T and T' are acting on the spaces H and H', respectively. Note that the complete injection-similarity can be implemented by two suitably chosen operators $\{X_1, X_2\}$ from H to H' and two operators $\{Y_1, Y_2\}$ from H' to H (cf. [2] and [3]). Uchiyama [5] showed that in this case the induced mappings $\alpha: K \to X_1 K \vee X_2 K$ and $\beta: K' \to Y_1 K' \vee Y_2 K'$ are (lattice) isomorphisms between Hyperlat T and Hyperlat T', which are inverses to each other. Thus in view of Lemmas 1 and 2 to complete the proof we have only to show that (i) $\beta(\ker \psi(T')) = \ker \psi(T)$ and (ii) $\beta(\overline{\text{ran } \xi(T')}) = \overline{\text{ran } \xi(T)}$ hold for arbitrary ψ, ξ in H^∞.

To prove (i), let $x = Y_1 y$, where $y \in \ker \psi(T')$. Since $\psi(T)x = \psi(T)Y_1 y = Y_1 \psi(T') y = 0$, we have $x \in \ker \psi(T)$. This shows that $Y_1 \ker \psi(T') \subseteq \ker \psi(T)$. Similarly, $Y_2 \ker \psi(T') \subseteq \ker \psi(T)$, and hence $\beta(\ker \psi(T')) \subseteq \ker \psi(T)$. In a similar fashion, we have $\alpha(\ker \psi(T)) \subseteq \ker \psi(T')$. Thus $\ker \psi(T) = \beta(\ker \psi(T')) \subseteq \ker \psi(T')$, which proves (i). (ii) can be proved analogously. This finishes the proof of the Theorem.

Corollary. Let T be a linear transformation on a finite-dimensional space H. Then Hyperlat T is (lattice) generated by those subspaces which are either $\ker p(T)$ or $\overline{\text{ran } q(T)}$, where p and q are polynomials.

Proof. For $0 < \alpha < 1/\|T\|$, $S = \alpha T$ is a strict contraction, hence a contraction of class C_0. The Theorem implies that Hyperlat $S = \text{Hyperlat } T$ is (lattice) generated by those subspaces which are either $\ker U$ or $\overline{\text{ran } V}$, where U, V are operators in $\{S\}'' = \{T\}''$, the double commutants of S and T. Our assertion follows from the fact that $\{T\}''$ consists of polynomials in T.

Corollary. Let T be a linear transformation on a finite-dimensional space H. Then Hyperlat T is (lattice) generated by those subspaces which are either $\ker p(T)$ or $\overline{\text{ran } q(T)}$, where p and q are polynomials.
REFERENCES

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHIAO TUNG UNIVERSITY, HSINCHU, TAIWAN, REPUBLIC OF CHINA