Representing a closed operator as a quotient of continuous operators
HTML articles powered by AMS MathViewer
- by William E. Kaufman
- Proc. Amer. Math. Soc. 72 (1978), 531-534
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509249-9
- PDF | Request permission
Abstract:
The closed operators in a Hilbert space H are characterized as quotients $A{B^{ - 1}}$ of continuous operators on H such that the vector sum ${A^\ast }(H) + {B^\ast }(H)$ is closed. This leads to the function $\Gamma (A) = A{(1 - {A^\ast }A)^{ - 1/2}}$, which is shown to map the strictly contractive operators on H reversibly onto the closed densely-defined operators, so as to preserve the selfadjoint and nonnegative conditions.References
- P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254–281. MR 293441, DOI 10.1016/S0001-8708(71)80006-3
- J. J. Koliha, Convergent and stable operators and their generalization, J. Math. Anal. Appl. 43 (1973), 778–794. MR 324447, DOI 10.1016/0022-247X(73)90292-8
- J. S. MacNerney, Investigation concerning positive definite continued fractions, Duke Math. J. 26 (1959), 663–677. MR 117326
- J. S. MacNerney, Continuous embeddings of Hilbert spaces, Rend. Circ. Mat. Palermo (2) 19 (1970), 109–112. MR 303267, DOI 10.1007/BF02843890
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- J. von Neumann, Über adjungierte Funktionaloperatoren, Ann. of Math. (2) 33 (1932), no. 2, 294–310 (German). MR 1503053, DOI 10.2307/1968331 J. von Neumann, Functional operators, vol. II, Ann. of Math. Studies, no. 22, Princeton Univ. Press, Princeton, N. J., 1950.
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 531-534
- MSC: Primary 47A65
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509249-9
- MathSciNet review: 509249