Topological mixing of higher degrees
HTML articles powered by AMS MathViewer
- by Sue Goodman and Brian Marcus
- Proc. Amer. Math. Soc. 72 (1978), 561-565
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509255-4
- PDF | Request permission
Abstract:
We give examples of homeomorphisms which are topologically 1-mixing but not topologically 2-mixing. One is a subshift and the other is a diffeomorphism of the torus.References
- Nathaniel A. Friedman, Introduction to ergodic theory, Van Nostrand Reinhold Mathematical Studies, No. 29, Van Nostrand Reinhold Co., New York-Toronto-London, 1970. MR 0435350
- John C. Oxtoby, Stepanoff flows on the torus, Proc. Amer. Math. Soc. 4 (1953), 982–987. MR 60812, DOI 10.1090/S0002-9939-1953-0060812-4 F. M. Dekking and M. Keane, Mixing properties of substitutions (preprint).
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 561-565
- MSC: Primary 54H20
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509255-4
- MathSciNet review: 509255