Metrizability of compact sets and continuous selections
HTML articles powered by AMS MathViewer
- by G. Mägerl
- Proc. Amer. Math. Soc. 72 (1978), 607-612
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509263-3
- PDF | Request permission
Abstract:
It is shown that, in two of Michael’s theorems on continuous selections, the condition that the range of the correspondence under consideration be metrizable is not only essential (as known through several counterexamples), but in some sense also necessary. This yields a characterization of metrizability for compact spaces and compact convex sets by means of continuous selections.References
- H. H. Corson and J. Lindenstrauss, Continuous selections with nonmetrizable range, Trans. Amer. Math. Soc. 121 (1966), 492–504. MR 187214, DOI 10.1090/S0002-9947-1966-0187214-8
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- B. Efimov, Dyadic bicompacta, Soviet Math. Dokl. 4 (1963), 496–500. MR 0190894 G. Mägerl, Zu den Schnittsätzen von Michael und Kuratowski Ryll-Nardzewski, Dissertation, Universität Eriangen-Nürnberg, 1977.
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI 10.1090/S0002-9947-1951-0042109-4
- Ernest Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361–382. MR 77107, DOI 10.2307/1969615
- Ernest Michael, Continuous selections. II, Ann. of Math. (2) 64 (1956), 562–580. MR 80909, DOI 10.2307/1969603
- E. Michael, A selection theorem, Proc. Amer. Math. Soc. 17 (1966), 1404–1406. MR 203702, DOI 10.1090/S0002-9939-1966-0203702-5 Z. Semadeni, Banach spaces of continuous functions, Monogr. Mat., Tom 55, PWN, Warsaw, 1971.
- Heinrich von Weizsäcker, Some negative results in the theory of lifting, Measure theory (Proc. Conf., Oberwolfach, 1975) Lecture Notes in Math., Vol. 541, Springer, Berlin, 1976, pp. 159–172. MR 0450972
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 607-612
- MSC: Primary 54C65; Secondary 46A99
- DOI: https://doi.org/10.1090/S0002-9939-1978-0509263-3
- MathSciNet review: 509263