Properties of $S$-closed spaces
HTML articles powered by AMS MathViewer
- by Douglas E. Cameron
- Proc. Amer. Math. Soc. 72 (1978), 581-586
- DOI: https://doi.org/10.1090/S0002-9939-1978-0514999-4
- PDF | Request permission
Abstract:
It is shown that the S-closed spaces introduced by Travis Thompson using semiopen sets may be characterized as spaces where covers by regular closed sets have finite subcovers. S-closed is contagious and semiregular but is neither productive nor preserved by continuous surjections. Extremally disconnected QHC spaces are S-closed and maximal S-closed spaces are precisely the maximal QHC spaces which are extremally disconnected.References
- D. E. Cameron, Maximal QHC-spaces, Rocky Mountain J. Math. 7 (1977), no. 2, 313–322. MR 448304, DOI 10.1216/RMJ-1977-7-2-313
- Douglas E. Cameron, A class of maximal topologies, Pacific J. Math. 70 (1977), no. 1, 101–104. MR 464157, DOI 10.2140/pjm.1977.70.101
- Murray R. Kirch, On Hewitt’s $\gamma$-maximal spaces, J. Austral. Math. Soc. 14 (1972), 45–48. MR 0317259, DOI 10.1017/S1446788700009629
- J. Mioduszewski and L. Rudolf, $H$-closed and extremally disconnected Hausdorff spaces, Dissertationes Math. (Rozprawy Mat.) 66 (1969), 55. MR 256353
- Olav Njȧstad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961–970. MR 195040, DOI 10.2140/pjm.1965.15.961
- Jack Porter and John Thomas, On $H$-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. 138 (1969), 159–170. MR 238268, DOI 10.1090/S0002-9947-1969-0238268-4
- Travis Thompson, $S$-closed spaces, Proc. Amer. Math. Soc. 60 (1976), 335–338 (1977). MR 425899, DOI 10.1090/S0002-9939-1976-0425899-0
Bibliographic Information
- © Copyright 1978 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 72 (1978), 581-586
- MSC: Primary 54D30; Secondary 54G05
- DOI: https://doi.org/10.1090/S0002-9939-1978-0514999-4
- MathSciNet review: 0514999