THE CONORMAL MODULE OF AN ALMOST COMPLETE INTERSECTION

ERNST KUNZ

Abstract. The conormal module of an ideal I in a commutative ring S is the S/I-module I/I^2. Assume S is a regular noetherian ring and I a prime ideal, which is locally everywhere a complete intersection or an almost complete intersection (i.e. needs one generator more than in the complete intersection case). In this situation necessary and sufficient conditions for I/I^2 being torsion free are given. Moreover the torsion of I/I^2 is expressed in terms of Kahler differentials of S/I.

1. Torsion freeness of the conormal module. Let S be a regular local ring, I an ideal of S and $R = S/I$. We say that I (or R) is a “complete intersection”, if $\mu(I) = \text{ht}(I)$, and that I (or R) is an “almost complete intersection”, if $\mu(I) = \text{ht}(I) + 1$. Here μ denotes the minimal number of generators and ht means “height”.

I is a complete intersection iff the conormal module I/I^2 is a free R-module (see [3] or [9]). In this note we are interested in necessary and sufficient conditions for I/I^2 being torsion free, in case I is a prime ideal and an almost complete intersection. Observe that for a prime ideal I the R-module I/I^2 is torsion free iff I^2 is an I-primary ideal.

Theorem 1. Let S be a regular noetherian ring, I a prime ideal of S which is locally everywhere a complete intersection or an almost complete intersection. For $R = S/I$ let K_R be the canonical (dualizing) module of R, i.e. $K_R = \text{Ext}_S^r(R, S)$, where $r = \text{ht}(I)$. Then the following conditions are equivalent:

(a) I/I^2 is a torsion free R-module.
(b) K_R is a reflexive R-module.
(c) For all $P \in \text{Spec}(R)$ with $\text{ht}(P) = 1$ the local ring R_P is a complete intersection.

From this we see, for example, that if under the assumptions of the theorem we have $\text{dim } R = 1$ and R_M is an almost complete intersection for some maximal ideal M of R, then I^2 is not primary. Explicit examples in the polynomial ring $K[X_1, X_2, X_3]$ over a field K can easily be given. In fact, it was shown recently that for $I \in \text{Spec}(K[X_1, X_2, X_3])$ the ideal I^2 is primary if

Received by the editors January 9, 1978.

Key words and phrases. Almost complete intersection, conormal module, canonical module, differential module, Dedekind and Kahler different, regular differential forms.

© 1979 American Mathematical Society

Under the assumptions of the theorem condition (a) is "independent of the embedding", since condition (c) depends obviously only on \(R \).

Proof of Theorem 1. It is enough to prove the local version of the theorem, so we shall assume that \(S \) is a regular local ring. We may also assume that \(R \) is an almost complete intersection, since the theorem is known for complete intersections. Matsuoka [7] has constructed an exact sequence

\[
0 \rightarrow K_R \rightarrow R^{r+1} \rightarrow I/I^2 \rightarrow 0.
\]

Moreover, Aoyama ([1, Lemma]) has shown the formula

\[
\text{depth}(K_{R_P}) = \min\{2 + \text{depth}(R_P), \dim R_P\}
\]

for all \(P \in \text{Spec}(R) \).

Let \(C \) be the cokernel of \((I/I^2)^* \rightarrow (R^{r+1})^*\), where * denotes the \(R \)-dual module. Then there is a linear map \(\tau: K_R \rightarrow C^* \) such that the diagram with exact rows

\[
\begin{array}{cccc}
0 & \rightarrow & K_R & \rightarrow & R^{r+1} & \rightarrow & I/I^2 & \rightarrow & 0 \\
& & \downarrow & \tau & & \downarrow & & \downarrow & \\
0 & \rightarrow & C^* & \rightarrow & (R^{r+1})^** & \rightarrow & (I/I^2)^** & \rightarrow & 0
\end{array}
\]

is commutative.

Suppose (a) is satisfied. Then \(I/I^2 \rightarrow (I/I^2)^{**} \) is injective, since \(R \) is a domain, and therefore \(\tau \) is an isomorphism. Since \(C^* \) is reflexive, being the dual of a finitely generated module over a noetherian domain, \(K_R \) is also reflexive. If \(K_R \) is reflexive, then so is \(K_{R_P} \) for all \(P \in \text{Spec}(R) \) with \(\text{ht}(P) = 1 \). By [4, 7.29] \(R_P \) has to be Gorenstein. But \(R_P \) is an almost complete intersection or a complete intersection. By [5] only the second possibility can hold, hence (c) follows from (b).

Assume now that condition (c) of the theorem is satisfied. Then \(\dim R_P > 2 \), if \(R_P \) is an almost complete intersection; hence \(\text{depth}(K_{R_P}) > 2 \) by (2) and \(\text{depth}(R_P \otimes_R I/I^2) > 1 \) by (1). Thus \(P \) is not an associated prime of \(I/I^2 \). If \(R_P \) is a complete intersection, then \(R_P \otimes_R I/I^2 \) is even free. We conclude that \(I/I^2 \) is torsion free.

2. An exact sequence for the torsion of the conormal module. The torsion \(T(I/I^2) \) of \(I/I^2 \) is related to the Kähler and Dedekind different of \(R \) over a suitable subring. In order to simplify we make the following assumptions: \(S = k[X_1, \ldots, X_n] \) is a power series algebra over a perfect field \(k \) and \(I \in \text{Spec}(S) \).

1The author wishes to thank J. Herzog, T. Matsuoka and R. Waldi for comments leading to a generalization of the original theorem and a simplified proof.
In $R = S/I$ we write x_i for the image of X_i. If $\dim R = d$, there is a power series algebra Q of d variables over k, such that $Q \subset R$, R is a Q-module of finite type and the quotient field L of R is separable algebraic over the quotient field K of Q.

After a change of variables, if necessary, we may assume that $Q = k[x_1, \ldots, x_d]$. We may identify Q with the subalgebra $k[X_1, \ldots, X_d]$ of S. Moreover we have an exact sequence

$$0 \to T(I/I^2) \to I/I^2 \to R \otimes_S D_Q(S) \to D_Q(R) \to 0,$$

(3)

where D_Q is the Kähler differential module relative to Q. Suppose now I is an almost complete intersection of height $r = n - d$ and (F_1, \ldots, F_{r+1}) a system of generators of I. We may assume that the mapping $\beta: R^{r+1} \to I/I^2$ in (1) sends the canonical basis element e_i of R^{r+1} to the image \overline{F}_i of F_i in I/I^2 ($i = 1, \ldots, r + 1$). Combining (1) and (3) we get a commutative diagram with exact rows and columns

$$
\begin{array}{ccccccccc}
0 & 0 & & & & & & & \\
\downarrow & \downarrow & & & & & & & \\
K_R & = & K_R & & & & & & \\
\downarrow & \downarrow & & & & & & & \\
0 & \to & D & \to & R^{r+1} & \to & R^r & \to & D_Q(R) & \to & 0 \\
\downarrow & \downarrow & \alpha & \downarrow & \beta & \downarrow & \| & & & & & \\
0 & \to & T(I/I^2) & \to & I/I^2 & \to & R \otimes_S D_Q(S) & \to & D_Q(R) & \to & 0 \\
\downarrow & \downarrow & & & & & & & \\
0 & 0 & & & & & & &
\end{array}
$$

(4)

where α is given by the Jacobian matrix $J = (\partial F_i/\partial x_k)_{i=1, \ldots, r+1; k=d+1, \ldots, n}$ and $D = \ker(\alpha)$.

Lemma 1. $D = \mathcal{D}(R/Q)^{-1}$, where \mathcal{D} is the Kähler different of R over Q, i.e. the ideal generated by all $r \times r$ minors of J. In particular, we have an exact sequence

$$0 \to K_R \to \mathcal{D}(R/Q)^{-1} \to T(I/I^2) \to 0.$$

Proof. By tensoring the middle row of (4) with L we see that $D \otimes_R L \cong L$. By Cramer's rule $\ker(\alpha \otimes L) = L \cdot (\Delta_1 e_1 + \cdots + \Delta_{r+1} e_{r+1})$, where $\Delta_1, \ldots, \Delta_{r+1}$ are the $r \times r$ minors of J (with suitable signs). D can be identified with the set of all $\lambda \in L$ for which $\lambda \Delta_i \in R$ ($i = 1, \ldots, r + 1$), i.e. with $\mathcal{D}(R/Q)^{-1}$.

3. Applications to differential forms. Under the assumptions as in the beginning of §2 we consider in the L-vector space $\Lambda^d(L \otimes_R D_k(R))$ of "meromorphic d-forms" the R-submodule

$$\Omega^d_R := \mathcal{D}(R/Q)^{-1} dx_1 \wedge \cdots \wedge dx_d.$$
Lemma 2. Ω_R' does not depend on the choice of $Q \subset R$.

Let $Q' = k[y_1, \ldots, y_d]$ be another subalgebra of R having analogous properties as Q. In $\Lambda^d(L \otimes_R D_k(R))$ we have an equation

$$dx_1 \wedge \cdots \wedge dx_d = \delta dy_1 \wedge \cdots \wedge dy_d \quad (\delta \in L \setminus \{0\})$$

and in $\Lambda^n(L \otimes_S D_k(S))$

$$dx_1 \wedge \cdots \wedge ds_i \wedge dF_i \wedge \cdots \wedge dF_i$$

if F_i, \ldots, F_i are taken from a set of generators $\{F_1, \ldots, F_m\}$ of \mathcal{I}. From this we can conclude that $\mathcal{O}(R/Q) = \delta \mathcal{O}(R/Q')$ and $\mathcal{O}(R/Q)^{-1}dx_1 \wedge \cdots \wedge dx_d = \mathcal{O}(R/Q')^{-1}dy_1 \wedge \cdots \wedge dy_d$.

Let $\mathfrak{C}(R/Q)$ be the Dedekind complementary module of \mathfrak{A} over Q, i.e. the set of all $\mathfrak{A} \in L$ such that $\mathfrak{C}(R/Q) \mathfrak{A} \subset Q$ for all $r \in R$, where $\mathfrak{C}(R/Q)$ is the canonical trace. It is known that $\mathfrak{C}(R/Q) \subset \mathfrak{C}(R/Q)^{-1}$ and that $\mathfrak{C}(R/Q)$ is a canonical module of R. Moreover $\Omega_R := \mathfrak{C}(R/Q)^{-1}dx_1 \wedge \cdots \wedge dx_d$ does not depend on the choice of Q (see [6]).

The R-modules Ω_R and Ω_R' represent two possibilities to define “regular d-forms for R”. A third one is given by taking the image Ω_R' of $\Lambda^dD_k(R)$ in $\Lambda^d(L \otimes_R D_k(R))$.

If R is a regular local ring, then $\Omega_R = \Omega_R' = \Omega_R''$. For a complete intersection R still $\Omega_R = \Omega_R''$. The situation for almost complete intersections describes

Theorem 2. Let R be an almost complete intersection. Then

$$\Omega_R/\Omega_R \cong T(I/I^2)$$

Hence the following conditions are equivalent:

(a) $\Omega_R = \Omega_R'$.

(b) R_P is a complete intersection for all $P \in \text{Spec}(R)$, $ht(P) = 1$.

(c) Ω_R is reflexive.

Proof. We shall use the construction of the exact sequence (1) given by Matsuoka [7]. By the “Primbasissatz” there is a minimal system of generators $\{F_1, \ldots, F_{r+1}\}$ of I such that $\{F_1, \ldots, F_r\}$ is S-regular sequence and $I_S = \langle F_1, \ldots, F_r \rangle \cdot S$.

Let $J := \langle F_1, \ldots, F_r \rangle \cdot S$. Then $K_R \cong J: I/J$ as R-module. There is a well-defined map $\gamma: J: I/J \rightarrow R^{r+1}$ given as follows: For $G \in J: I$ let $-GF_{r+1} = G_1F_1 + \cdots + G_rF_r$ ($G_i \in S$). Then γ maps G onto $\Sigma_{i=1}^{r+1} G_ie_i + \Sigma_{i=1}^{r+1} G_ie_{i+1}$, where G_i, G_i are the images of G, G_i in R. γ induces an injection $J: I/J \rightarrow R^{r+1}$ whose image is the kernel of $R^{r+1} \rightarrow I/I^2$.

Let $\Sigma = S/J$. We can choose $Q = k[x_1, \ldots, x_d]$ such that Σ is a Q-module of finite type (and L separable algebraic over K, as before). Since
L is the residue field of S_f, we can conclude that
$$\Delta_{r+1} = \frac{\partial (F_1, \ldots, F_r)}{\partial (x_{d+1}, \ldots, x_n)} \neq 0.$$

We use diagram (4) with the sequence $0 \to K_r \to R^{r+1} \to I/I^2 \to 0$ as described above. With the notations as in the proof of Lemma 1 the mapping $D \to R^{r+1}$ identifies each $\lambda \in \mathfrak{D}(R/Q)^{-1}$ with $\lambda(\Delta_1 e_1 + \cdots + \Delta_r e_r) \in R^{r+1}$. This element is in $\ker(\beta)$ iff $\lambda \Delta_{r+1}$ is in the image of $J : I$ in R. In order to prove Theorem 2 it is therefore sufficient to show

Lemma 3. If Δ is the image of $J : I$ in R, then
$$\Delta = \frac{\partial (F_1, \ldots, F_r)}{\partial (x_{d+1}, \ldots, x_n)} \cdot \mathfrak{c}(R/Q).$$

Proof. Let $I' = J : I$. We have $J = I \cap I'$ and I' has only associated primes P_1, \ldots, P_s of height r and different from I. If $\bar{I}, \bar{I'}$ and \bar{P}_i $(i = 1, \ldots, s)$ denote the images in Σ, then $\bar{I} \cap \bar{I'} = (0)$, $\bar{I'}$ = Ann$_k(\bar{I})$ and $\Sigma_{\bar{I}} = L$. For the full ring of quotients of Σ we have
$$Q(\Sigma) = K \otimes Q \cdot \Sigma = L \times \Sigma_{\bar{P}_1} \times \cdots \times \Sigma_{\bar{P}_s}. \quad (5)$$

The image of $\bar{I'}$ in $Q(\Sigma)$ is $\Delta \times (0) \times \cdots \times (0)$.

In the commutative diagram of canonical homomorphisms
$$\xymatrix{ \text{Hom}_Q(R, Q) \ar[r]^\alpha \ar[d]_{\beta} & \text{Hom}_K(L, K) \ar[d] \cr \text{Hom}_Q(\Sigma, Q) \ar[r] & \text{Hom}_K(K \otimes Q, \Sigma, K) \rlap{ all mappings are injective.} }$$

Let $\sigma_{L/K} : L \to K$, $\sigma_{\Sigma/Q} : \Sigma \to Q$ and $\sigma : K \otimes Q \Sigma \to K$ be the canonical traces. We have $\text{Hom}_K(L, K) = L \sigma_{L/K}$ and $\text{im}(\alpha) = \mathfrak{c}(R/Q) \sigma_{L/K}$. Moreover, since Σ/Q is a complete intersection, $\text{Hom}_Q(\Sigma, Q) = \Sigma \cdot \eta$ with a trace map $\eta : \Sigma \to Q$, which by Scheja-Storch [8, 4.2], can be chosen in such a way that
$$\sigma_{\Sigma/Q} = \frac{\partial (F_1, \ldots, F_r)}{\partial (x_{d+1}, \ldots, x_n)} \cdot \eta,$$

where $\partial (F_1, \ldots, F_r)/\partial (x_{d+1}, \ldots, x_n)$ denotes the image of the Jacobian determinant in Σ.

We have $\text{im}(\beta) = \bar{I'} \eta$, since for $s \in \Sigma$ the map $s \eta$ factors through R iff $s \in \bar{I'}$. From (5) we get a decomposition
$$\text{Hom}_K(K \otimes Q, \Sigma, K) = (L \times \Sigma_{\bar{P}_1} \times \cdots \times \Sigma_{\bar{P}_s}) \cdot \eta$$
$$= \text{Hom}_K(L, K) \times \text{Hom}_K(\Sigma_{\bar{P}_1}, K) \times \cdots \times \text{Hom}_K(\Sigma_{\bar{P}_s}, K),$$
and Hom\(_K(\Sigma, K) \to Hom_K(K \otimes Q \Sigma, K)\) is the canonical injection onto the first factor.

The image of \(\overline{T} \eta\) in Hom\(_K(K \otimes Q \Sigma, K)\) is

\[
(\Delta \times (0) \times \cdots \times (0)) \cdot \eta = \left[\Delta_{r+1}^{-1} \cdot (\Delta \times (0) \times \cdots \times (0))\right] \cdot \sigma
= (\Delta_{r+1}^{-1} \cdot \Delta \cdot \sigma_{L/K}) \times (0) \times \cdots \times (0).
\]

We obtain \(\mathfrak{G}(R/Q) \cdot \sigma_{L/K} = \Delta_{r+1}^{-1} \cdot \Delta \cdot \sigma_{L/K},\) which proves the claim.

If \(R\) is an almost complete intersection of dimension 1 the length of \(T(I/I^2)\) is related to the length of the torsion \(T(D_k(R))\) of the differential module.

Consider the exact sequence

\[
0 \to T(D_k(R)) \to D_k(R) \to \Omega_R \to C \to 0,
\]

where \(C\) is the cokernel of the canonical map \(D_k(R) \to \Omega_R\).

If \(Q \subset R, Q = k[x]\) is chosen as above, then \(Rdx\) is a free submodule of \(D_k(R)\) and hence we have also exact sequences

\[
0 \to T(D_k(R)) \to D_k(R)/Rdx \to \Omega_R/Rdx \to C \to 0
\]

and

\[
0 \to \Omega_R/Rdx \to \Omega_R/Rdx \to T(I/I^2) \to 0.
\]

This gives us the length-formula

\[
l(C) = l(T(D_k(R))) - l(T(I/I^2)) + l(\Omega_R/Rdx) - l(D_k(R)/Rdx).
\]

By Berger [2, Satz 2], \(l(D_k(R)/Rdx) = l(\mathfrak{G}(R/Q)^{-1}/R) = l(\Omega_R/Rdx),\) therefore

\[
l(C) = l(T(D_k(R))) - l(T(I/I^2)).
\]

Since \(\dim R = 1\) we have \(T(I/I^2) \neq 0\), hence

\[
0 < l(T(I/I^2)) < l(T(D_k(R)))
\]

and

\[
l(C) < l(T(D_k(R))).
\]

References

ALMOST COMPLETE INTERSECTION

FACHBEREICH MATHEMATIK, UNIVERSITÄT REGensburg, D 8400 REGensburg, FEDERAL REPUBLIC OF GERMANY