THAT QUASINILPOTENT OPERATORS ARE NORM-LIMITS OF NILPOTENT OPERATORS REVISITED

C. APOSTOL, C. FOIAS AND C. PEARCY

Abstract. A new short proof is given that every quasinilpotent operator on a separable, infinite dimensional, complex Hilbert space is a norm-limit of nilpotent operators.

Let H be a separable, infinite dimensional, complex Hilbert space, and let $L(H)$ denote the algebra of all bounded linear operators on H.

In [2] it was shown that every quasinilpotent operator T in $L(H)$ (i.e., every T whose spectrum is the singleton $\{0\}$) is a norm-limit of nilpotent operators. The purpose of this note is to give a very short and easily remembered proof of this theorem. Our proof has two basic ingredients: the use of a model for quasinilpotent operators constructed in [4], and the use of a deep theorem of Voiculescu [7]. For completeness we review the relevant facts from [4] and [7] that we shall need.

Let $H_\infty = H \oplus H \oplus \ldots$ be the direct sum of S_0 copies of H indexed by the positive integers, let $\kappa = (\kappa_n)_{n=1}^{\infty}$ be a monotone decreasing sequence of nonnegative numbers converging to zero, and let U_κ denote the quasinilpotent backward weighted shift operator in $L(H_\infty)$ defined by the equation

$$U_\kappa(x_1, x_2, \ldots, x_n, \ldots) = (\kappa_1 x_2, \kappa_2 x_3, \ldots, \kappa_n x_{n+1}, \ldots).$$

Theorem A [4]. If T is any quasinilpotent operator in $L(H)$, then there is a sequence $\kappa = \kappa(T) = (\kappa_n)_{n=1}^{\infty}$ with the above described properties and a subspace M of H_∞ that is invariant under the quasinilpotent operator U_κ such that T is similar to $U_\kappa|_M$ and such that the subspace $H_\infty \ominus M$ is infinite dimensional.

We shall need some lemmas, the first two of which are completely elementary.

Lemma 1. Let T_1 and T_2 belong to $L(H_1)$ and $L(H_2)$, respectively, and suppose that there exists a sequence $\{S_n\}_{n=1}^{\infty}$ of invertible operators $S_n: H_1 \to H_2$ such that $\|S_n^{-1} T_1 S_n - T_2\| \to 0$. If T_1 is a norm-limit of nilpotent operators, then so is T_2.

Lemma 2. The operator U_κ in (1) is a norm-limit of nilpotent operators in $L(H_\infty)$ (since the sequence κ converges to zero).

Received by the editors February 21, 1978 and, in revised form, April 11, 1978.

Key words and phrases. Quasinilpotent operator, norm-limit.
The following lemma is only slightly less elementary and is a special case of [6, Proposition 6.18].

Lemma 3. Let $S = (S_{ij})_{i,j=1}^n$ be an $n \times n$ matrix with operator entries acting on the direct sum $\mathcal{H} \oplus \cdots \oplus \mathcal{H}$ of n copies of \mathcal{H} and having the property that $S_{ij} = 0$ if $i > j$. If each $S_{ii}, 1 \leq i \leq n,$ is a norm-limit of nilpotent operators, then so is S. On the other hand, if S is a norm-limit of nilpotent operators, then so is $S_{11} \oplus \cdots \oplus S_{nn}$.

Proof. For $1 \leq i \leq n$, let N_{ii} be a nilpotent operator such that $\|N_{ii} - S_{ii}\| < \varepsilon$. Then the matrix \tilde{S} obtained by replacing each diagonal entry S_{ii} by the corresponding operator N_{ii} satisfies $\|	ilde{S} - S\| < \varepsilon$, and it is easy to see that \tilde{S} is nilpotent. To go the other way, observe that by choosing n sufficiently large, the matrix

$$\text{Diag}(1, n, \ldots, n^{n-1})(S_{ij})\text{Diag}(1, \frac{1}{n}, \ldots, \frac{1}{n^{n-1}})$$

can be made as close as desired to $S_{11} \oplus \cdots \oplus S_{nn}$, and use Lemma 1.

Lemma 4. If T belongs to $\mathcal{L}(\mathcal{H})$ and is quasinilpotent, and Theorem A is used to write the space \mathcal{H}_{∞} as $\mathcal{H}_{\infty} = \mathcal{M} \oplus \mathcal{M}^+$ where $U_\mathcal{M} \mathcal{M} \subset \mathcal{M}$ and T is similar to $T' = U_\mathcal{M}^T \mathcal{M}$, then in the corresponding matrix decomposition

$$U_\mathcal{M} = \begin{pmatrix} T' & A \\ 0 & S \end{pmatrix},$$

(2)

the operator S is quasinilpotent and $T' \oplus S$ is a norm-limit of nilpotent operators.

Proof. That S is quasinilpotent follows from the fact that $U_\mathcal{M}$ is quasinilpotent (Theorem A) and the form of the matrix (2). That $T' \oplus S$ is a norm-limit of nilpotent operators is an immediate consequence of Lemmas 2 and 3.

Theorem B [1]. If T is any quasinilpotent operator in $\mathcal{L}(\mathcal{H})$, then $T \oplus 0$ is a norm-limit of nilpotent operators in $\mathcal{L}(\mathcal{H} \oplus \mathcal{H})$.

Proof. According to Lemmas 4 and 1, $T \oplus S$ is a norm-limit of nilpotent operators on $\mathcal{H} \oplus \mathcal{H}$ and S is quasinilpotent. Thus, by a theorem of Rota (cf. [5, p. 77]), S is similar to operators of arbitrarily small norm, and the result follows by another application of Lemma 1.

Corollary 1. Suppose T_1 and T_2 are quasinilpotent operators in $\mathcal{L}(\mathcal{H})$ and both T_1 and T_2^* have infinite dimensional kernels. Then $T_1 \oplus T_2$ is the norm-limit of nilpotent operators in $\mathcal{L}(\mathcal{H} \oplus \mathcal{H})$.

Proof. Up to unitary equivalence, $T_1 \oplus T_2$ may be written as a 4×4 matrix
acting on the Hilbert space $\mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H}$, and this matrix, in turn, is unitarily equivalent to

$$
\begin{pmatrix}
0 & B_1 & 0 & 0 \\
0 & C_1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & B_2 & C_2
\end{pmatrix}.
$$

Since C_1 and C_2 are quasinilpotent, the corollary now follows from Theorem B and Lemma 3.

We turn now to some preparatory notation that we shall need to review the above-mentioned theorem of Voiculescu. If T_1 and T_2 are operators in $\mathcal{L}(\mathcal{K}_1)$ and $\mathcal{L}(\mathcal{K}_2)$, respectively, and if there exist a unitary operator $U: \mathcal{K}_1 \to \mathcal{K}_2$ and a compact operator K in $\mathcal{L}(\mathcal{K}_2)$ such that $UT_1U^* = T_2 + K$ and such that $\|K\| < \epsilon$, then we say that T_1 and T_2 are ϵ-compalent and we write $T_1 \sim T_2(\epsilon)$. Observe that the relation of ϵ-compalence is symmetric, that is, $T_1 \sim T_2(\epsilon)$ if and only if $T_2 \sim T_1(\epsilon)$. We denote the ideal of compact operators in $\mathcal{L}(\mathcal{K})$ by $K(\mathcal{K})$, and the quotient map of $\mathcal{L}(\mathcal{K})$ onto the Calkin algebra $\mathcal{L}(\mathcal{K})/K(\mathcal{K})$ by π. If $T \in \mathcal{L}(\mathcal{K})$, we denote by $C^*_s(T)$ the separable C^*-subalgebra of $\mathcal{L}(\mathcal{K})/K(\mathcal{K})$ generated by $\pi(T)$ and $\pi(1_{\mathcal{K}})$.

Theorem C [7]. Let $T \in \mathcal{L}(\mathcal{K})$, and let ρ be a faithful representation of $C^*_s(T)$ on a separable Hilbert space \mathcal{H} such that $\rho(\pi(1_{\mathcal{K}})) = 1_{\mathcal{H}}$. Then for every positive number ϵ, $T \oplus \rho(\pi(T)) \sim T(\epsilon)$.

Based on the above considerations we are now prepared to give a transparent proof of the following theorem.

Theorem D [2]. Every quasinilpotent operator T in $\mathcal{L}(\mathcal{K})$ is a norm-limit of nilpotent operators.

Proof. Using Theorem C and Lemma 1, we observe that it suffices to construct some faithful representation ρ of $C^*_s(T)$ on a separable Hilbert space \mathcal{K} such that $\rho(\pi(1_{\mathcal{K}})) = 1_{\mathcal{K}}$ and such that $T \oplus \rho(\pi(T))$ is a norm-limit of nilpotent operators in $\mathcal{L}(\mathcal{K} \oplus \mathcal{K})$. Furthermore, if τ is a faithful representation of $C^*_s(T)$ on a separable Hilbert space \mathcal{K} such that $\tau(\pi(1_{\mathcal{K}})) = 1_{\mathcal{K}}$, then \mathcal{K} may be taken to be $\mathcal{K} \oplus \mathcal{K}$ and ρ to be $\tau \oplus \tau$. Thus it suffices to find a representation τ with the above-mentioned properties such that $[T \oplus \tau(\pi(T))] \oplus \tau(\pi(T))$ is a norm-limit of nilpotent operators. On the other hand, by virtue of Corollary 1, it suffices to construct such a representation τ with the property that both $\tau(\pi(T))$ and $\tau(\pi(T^*))$ have infinite dimensional kernels, and this goes as follows. Since T and T^* are quasinilpotent, one
knows from [8] (cf. also [3, Theorem 3.1]) that there exist projections E and F in $\mathcal{L}(\mathcal{H})$ of infinite rank such that $\pi(T)\pi(E) = 0$ and $\pi(T^*)\pi(F) = 0$. Furthermore, E may be written as $E = \sum_{n=1}^{\infty} E_n$, where $\{E_n\}$ is an orthogonal sequence of projections each of which has infinite rank, and similarly F may be written as $F = \sum_{n=1}^{\infty} F_n$. Let \mathfrak{B} be the (separable) C^*-subalgebra of $\mathcal{L}(\mathcal{H})/K(\mathcal{H})$ generated by $\pi(T)$, $\pi(1_\mathcal{H})$, and the countable families $\{\pi(E_n)\}_{n=1}^{\infty}$ and $\{\pi(F_n)\}_{n=1}^{\infty}$, and let ν be a faithful representation of \mathfrak{B} on a separable Hilbert space \mathcal{H} so chosen that $\nu(\pi(1_\mathcal{H})) = 1_\mathcal{H}$. Then $\nu(\pi(T))\nu(\pi(E_n)) = 0$ and $\nu(\pi(T^*))\nu(\pi(F_n)) = 0$ for all positive integers n, so clearly the operators $\nu(\pi(T))$ and $\nu(\pi(T^*)) = (\nu(\pi(T)))^*$ have infinite dimensional kernels, and the result follows by setting $\tau = \nu|_{C^*_\varepsilon(T)}$.

REFERENCES

DEPARTMENT OF MATHEMATICS, INCREST, BUCHAREST, ROMANIA
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BUCHAREST, BUCHAREST, ROMANIA
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48109