A SIMPLE PROOF OF A COVERING PROPERTY OF LOCALLY COMPACT GROUPS

P. MILNES1 AND J. V. BONDAR

ABSTRACT. We give a simple proof of the following result of Emerson and Greenleaf.

THEOREM. Let V be a relatively compact subset with nonvoid interior of a locally compact group G. Then there exist a subset T ⊆ G and a natural number M such that G = \bigcup_{t ∈ T} tV and at most M of the tV's, t ∈ T, intersect.

The result cited above is proved in [4] and is used there and in [2] in the course of proving that every amenable locally compact group G has strong properties such as

(A) If ε > 0 and compact K ⊆ G containing the identity of G are given, there is a compact U ⊆ G with |U| > 0 such that |KU \Delta U|/|U| < ε.

(Here |U| indicates left Haar measure of the set U. And we remind the reader that G is called amenable if L^∞(G) admits a left invariant mean; see [6], [8], [1] for further details.)

The proof given in [4] of the theorem above involves some delicate arguments about geometry of groups. We discovered the simple proof presented below in the course of preparing [1] (and were apprised later that it is almost the same as a proof in Chapter 8, §1.7, of [7]); our reason for publishing it now is that it seems not widely known, according to [3], [5], that such a proof exists.

PROOF OF THE THEOREM. After a reduction as in [2; Proposition 2], we are left with the task of taking a relatively compact symmetric neighbourhood V of e ∈ G and finding T ⊆ G and constant M so that G = \bigcup_{t ∈ T} tV and at most M of the tV's, t ∈ V, intersect. We may assume the open and closed subgroup \bigcup_{t ∈ T} tV of G equals G. (For, if we cover \bigcup_{t ∈ T} tV with \bigcup_{t ∈ T} tV, then \bigcup_{t ∈ T} tV covers the coset s \bigcup_{t ∈ T} tV and hence we cover the whole group.) And we may assume the subgroup \bigcup_{t ∈ T} tV is not compact. (Otherwise we can cover it with a finite number of left translates of V and proceed as in the previous parenthetical remark.) We then get our set T ⊆ G as follows.

Let t_1 = e. Since G is not compact, \bigcup_{t ∈ T} tV is not compact. And there is a t_2 ∈ (V^2)^- \setminus V.

Received by the editors February 22, 1978 and, in revised form, April 28, 1978.

AMS (MOS) subject classifications (1970). Primary 22D05, 43A07.

Key words and phrases. Locally compact group, amenability, covering property.

1The research of the first-named author was supported in part by NRC grant A7857.

© 1979 American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
If \((V^2)^- \setminus \bigcup t_i V \neq \emptyset\), take \(t_3\) in it. Continuing like this, we get
\[(V^2)^- \subset \bigcup_{i=1}^{N_2} t_i V\]
with
\[j-1\]
\[t_j \notin \bigcup_{i=1}^{j-1} t_i V, \quad 2 \leq j \leq N_2.\]

(Note that, if \(W\) is a symmetric neighbourhood of \(e\) such that \(W^2 \subset V\), then
\[N_2 \leq \frac{|(V^2)^- W|}{|W|} \cdot |(V^2)^- W|/|W| \cdot |(V^2)^- W|/|W| \ldots \]
choose \(t_{N_2+1}\) in it. And so on. Hence, by induction, we get
\[(V^n)^- \subset \bigcup_{i=1}^{N_n} t_i V\]
with
\[j-1\]
\[t_j \notin \bigcup_{i=1}^{j-1} t_i V, \quad 2 \leq j \leq N_n.\]

thus \(G = \bigcup_{j=1}^{\infty} t_j V\) (and \(N_n \leq \frac{|(V^n)^- W|}{|W|} \cdot |(V^n)^- W|/|W| \ldots \).

Suppose \(s \in t_i V\). Then \(t_i s \in s V W\) and \(t_i W \in s V W\) (where \(W^2 \subset V\) as above). And, if \(s\) is also in \(t_j V\), then
\(t_j W \subset s V W\) with \(t_j W \cap t_j W = \emptyset\) if \(i \neq j\). It follows that \(s\) is contained in at most \(|V W|/|W|\) of the \(t_i V\)'s, \(i = 1, 2, 3, \ldots\).

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WESTERN ONTARIO, LONDON, ONTARIO N6A 3K7, CANADA

RESEARCH BRANCH, CANADIAN RADIO-TELEVISION COMMISSION, OTTAWA, ONTARIO K1A 0N2, CANADA