A GENERAL RAMSEY PRODUCT THEOREM

R. L. GRAHAM AND J. H. SPENCER

Abstract. Call a family \mathcal{F} of subsets of a set U *Ramsey* if no partition of U into finitely many parts can split every $F \in \mathcal{F}$. We show that under very general conditions an arbitrary collection of Ramsey families in fact has a much stronger uniform Ramsey property.

A family \mathcal{F} of finite subsets of a set U is said to be *Ramsey* if for all integers $r < \infty$ and all mappings $\chi: U \to \{1, 2, \ldots, r\} \equiv [1, r]$, there exists an $F \in \mathcal{F}$ which is *homogeneous*, i.e., such that for some $i \in [1, r]$ $F \subseteq \chi^{-1}(i)$. Given an arbitrary mapping $P: U \times U \to U$, a family \mathcal{F} is said to be a P-ideal of U if

$$F \in \mathcal{F} \Rightarrow P(F, u) \in \mathcal{F}, \quad P(u, F) \in \mathcal{F},$$

for all $u \in U$, where P is extended to $2^U \times 2^U$ in the usual way, i.e., for $X, Y \subseteq U$,

$$P(X, Y) \equiv \{ P(x, y): x \in X, y \in Y \}.$$

The following somewhat unexpected result shows that the Ramsey property holds simultaneously for arbitrary collections of Ramsey families under quite general conditions.

Theorem. Let $\{\mathcal{F}_a\}_{a \in A}$ be an arbitrary family of Ramsey P-ideals of U where $P: U \times U \to U$ is arbitrary. Then for any $r < \infty$ and any mapping $\chi: U \to [1, r]$, there exists $i \in [1, r]$ and $F_a \in \mathcal{F}_a$, $a \in A$, such that $F_a \subseteq \chi^{-1}(i)$ for all $a \in A$.

Proof. We first show by induction that for any integer m and any finite subcollection $\mathcal{F}_{a_1}, \ldots, \mathcal{F}_{a_t}$ of $\{\mathcal{F}_a\}_{a \in A}$, there is a finite set $F = [\mathcal{F}_{a_1}, \ldots, \mathcal{F}_{a_t}] \subseteq U$ such that for any mapping $\chi: F \to [1, m]$, there is an $i \in [1, m]$ and $F_j \in \mathcal{F}_{a_j}$ such that $F_j \subseteq \chi^{-1}(i)$ for $1 \leq j \leq t$. For $t = 1$, this follows at once from a well-known compactness principle (see [1]). Let $i > 1$ be fixed and suppose the assertion holds for all $t < i$. Also, the assertion is immediate for $m = 1$. Thus, let $m > 1$ be fixed and suppose the assertion also holds for $t = i$ and all $m < m$. Let $\mathcal{F}_{a_1}, \ldots, \mathcal{F}_{a_t}$ be an arbitrary fixed subcollection of $\{\mathcal{F}_a\}_{a \in A}$. By induction, the sets

$$X = [\mathcal{F}_{a_1}, \ldots, \mathcal{F}_{a_{i-1}}]_{m^*}, \quad Y = [\mathcal{F}_{a_i}]_{m} \quad \text{where } m^* = \overline{m}^{|X|},$$
and

\[F^* = P(X, Y) \]

exist and are finite.

Let \(\chi: U \to [1, \bar{m}] \) be an arbitrary fixed mapping of \(U \) into \([1, \bar{m}]\). Define a new mapping \(\chi^* \) on \(Y \) so that

\[\chi^*(y) = \chi^*(y'), \quad y, y' \in Y, \]

iff

\[\chi(P(x, y)) = \chi(P(x, y')) \quad \text{for all } x \in X. \]

Since

\[|P(X, y)| < |X| \quad \text{for all } y \in Y \]

then we can take \(\chi^* \) to be a mapping of \(Y \) into \([1, m^*]\). By the definition of \(Y \), there exists \(F_i \in \mathcal{F}_a \) such that for some \(i \in [1, m^*] \), \(F_i \subseteq \chi^{*^{-1}}(i) \). Let \(f \in F_i \).

We now define another mapping \(\chi': X \to [1, \bar{m}] \) by letting

\[\chi'(x) = \chi(P(x, f)), \quad x \in X. \]

Note that the value of \(\chi' \) is actually independent of the choice of \(f \).

By the definition of \(X \), there exists \(k \in [1, \bar{m}] \) and \(F_j \in \mathcal{F}_a \) such that

\[F_j \subseteq \chi^{-1}(k), \quad 1 < j < \bar{i} - 1. \]

Therefore,

\[P(F_j, f) \subseteq \chi^{-1}(k), \quad 1 < j < \bar{i} - 1, \]

and so

\[P(F_i, F_j) \subseteq \chi^{-1}(k), \quad 1 < j < \bar{i} - 1, \]

since

\[\chi(P(x, f)) = \chi(P(x, f')), \quad x \in X, \quad f, f' \in F_i. \]

But

\[P(F_j, f) \subseteq \mathcal{F}_a, \quad 1 < j < \bar{i} - 1, \]

since \(F_a \) is a \(P \)-ideal, and \(P(x, F_i) \subseteq \mathcal{F}_a \) for the same reason. Since all \(t \) of these sets are in \(\chi^{-1}(k) \) then we have shown that \(P(X, Y) \) can be taken as \([\mathcal{F}_a, \ldots, \mathcal{F}_a]_{\bar{m}} \). This completes the induction step and the first assertion is proved.

Now, suppose the theorem fails. Thus, for some \(r \) there is a mapping \(\chi: U \to [1, r] \) and families \(\mathcal{F}_i \in \{ \mathcal{F}_a \}_{a \in A} \) such that

\[F_i \subseteq \chi^{-1}(i) \quad \text{for all } F_i \in \mathcal{F}_i, \quad 1 < i < r. \quad (1) \]

By the preceding assertion, the (finite) set

\[[\mathcal{F}_1, \ldots, \mathcal{F}_r] \subseteq U \]

exists. Thus, for some \(k \in [1, r] \) and \(F'_j \in \mathcal{F}_j \),

\[F'_j \subseteq \chi^{-1}(k), \quad 1 < j < r. \]

In particular, \(F'_k \subseteq \chi^{-1}(k) \) and \(F'_k \in \mathcal{F}_a \). This contradicts (1) and the theorem is proved. \[\square \]
Typical applications of this theorem can produce significant strengthenings of many of the standard Ramsey-type results. For example, an old result of Gallai (see [3]), generalizing the theorem of van der Waerden on arithmetic progressions (see [2], [4]), asserts that for any finite subset C of E^n, in any partition of E^n into finitely many classes, some class always contains a subset C' which is similar to C. Using the product theorem of this note, taking U to be E^n and for $\bar{x}, \bar{y} \in E^n$, defining $P(\bar{x}, \bar{y}) = \bar{x} + \bar{y}$, we see, in fact, that in any partition of E^n into finitely many classes, one class must contain similar copies of every finite subset of E^n.

By taking $U = Z^+$, the set of positive integers, and $P(x, y) = xy$, we obtain the following classical theorem of Rado [3]. Call a system \mathcal{S} of homogeneous, linear equations regular, if for any partition of Z^+ into finitely many classes, \mathcal{S} has a solution entirely in one class. (Such systems were completely characterized by Rado.) Then, in fact, by the product theorem, for any partition of Z^+ into finitely many classes, some class contains solutions to every regular system of equations.

References

Bell Laboratories, Murray Hill, New Jersey 07974

Department of Mathematics, State University of New York, Stony Brook, New York 11794