Products of reflections in the unitary group
HTML articles powered by AMS MathViewer
- by Dragomir Ž. Djoković and Jerry Malzan
- Proc. Amer. Math. Soc. 73 (1979), 157-160
- DOI: https://doi.org/10.1090/S0002-9939-1979-0516455-7
- PDF | Request permission
Abstract:
Let $A \in U(n),\det (A) = \pm 1$ and let $\exp (i{\alpha _k}),1 \leqslant k \leqslant n$ be the eigenvalues of A where $0 \leqslant {\alpha _1} \leqslant {\alpha _2} \leqslant \cdots \leqslant {\alpha _n} < 2\pi$. Then $k(A) = ({\alpha _1} + \cdots + {\alpha _n})/\pi$ is an integer and $0 \leqslant k(A) \leqslant 2n - 1$. Denote by $l(A)$ the length of A with respect to the set of all reflections, i.e., $l(A)$ is the smallest integer m such that A is a product of m reflections. A reflection is a matrix conjugate to ${\text {diag}}( - 1,1, \ldots ,1)$. Our main result is the formula $l(A) = \max (k(A),k({A^\ast }))$.References
- Heydar Radjavi, Decomposition of matrices into simple involutions, Linear Algebra Appl. 12 (1975), no. 3, 247–255. MR 414585, DOI 10.1016/0024-3795(75)90047-6
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 73 (1979), 157-160
- MSC: Primary 22C05; Secondary 20G25
- DOI: https://doi.org/10.1090/S0002-9939-1979-0516455-7
- MathSciNet review: 516455