Minimal primitive ideals of GCR $C^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by Philip Green
- Proc. Amer. Math. Soc. 73 (1979), 209-210
- DOI: https://doi.org/10.1090/S0002-9939-1979-0516466-1
- PDF | Request permission
Abstract:
We show that a minimal primitive ideal of a GCR algebra may contain the maximal CCR ideal of the algebra, thus giving a negative answer to a question of J. Dixmier.References
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
- Jacques Dixmier, Sur les $C^{\ast }$-algèbres, Bull. Soc. Math. France 88 (1960), 95–112 (French). MR 121674, DOI 10.24033/bsmf.1545
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- James Glimm, Families of induced representations, Pacific J. Math. 12 (1962), 885–911. MR 146297, DOI 10.2140/pjm.1962.12.885
- James Glimm, Type I $C^{\ast }$-algebras, Ann. of Math. (2) 73 (1961), 572–612. MR 124756, DOI 10.2307/1970319
- Hiroshi Takai, On a duality for crossed products of $C^{\ast }$-algebras, J. Functional Analysis 19 (1975), 25–39. MR 0365160, DOI 10.1016/0022-1236(75)90004-x
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 73 (1979), 209-210
- MSC: Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1979-0516466-1
- MathSciNet review: 516466