PARACOMPACTNESS, METACOMPACTNESS, AND SEMI-OPEN COVERS

HEIKKI J. K. JUNNILA

Abstract. Paracompactness and metacompactness are characterized in terms of locally finite and point-finite semi-open refinements of open covers. It follows from one of these characterizations that a continuous image of a paracompact space under a pseudo-open and compact mapping is metacompact.

1. On semi-open covers. For the meaning of concepts used without definition in this paper, see [3]; note, however, that we do not require paracompact spaces or metacompact spaces to satisfy any separation axioms.

Throughout the following, \(X \) denotes a topological space. Let \(\mathcal{E} \) be a cover of \(X \). For each \(x \in X \), we let \((\mathcal{E})_x = \{ L \in \mathcal{E} | x \in L \} \). Note that we have \(\text{St}(x, \mathcal{E}) = \bigcup (\mathcal{E})_x \) for each \(x \in X \). If the set \(\text{St}(x, \mathcal{E}) \) is a neighborhood of \(x \) for each \(x \in X \), then we say that \(\mathcal{E} \) is a semi-open cover of \(X \). For some properties of semi-open covers, see [6]. When \(\mathcal{N} \) is a cover of \(X \), we say that \(\mathcal{N} \) is an \(F \)-refinement of the cover \(\mathcal{E} \) if each set \(N \in \mathcal{N} \) is contained in some finite union of sets of the family \(\mathcal{E} \).

Lemma 1.1. A locally finite semi-open cover of a topological space has a locally finite closed \(F \)-refinement.

Proof. Let \(\mathcal{E} \) be a locally finite and semi-open cover of \(X \). For each subfamily \(\mathcal{E}' \) of \(\mathcal{E} \), let \(K(\mathcal{E}') = \text{Cl}(\bigcap \mathcal{E}') - \text{Int}(\bigcup (\mathcal{E} \sim \mathcal{E}')) \). Note that if \(\mathcal{E}' \) is infinite, then \(K(\mathcal{E}') = \emptyset \). For each \(\mathcal{E}' \subset \mathcal{E} \), we have \(K(\mathcal{E}') \subset \bigcup \mathcal{E}' \). To see this, let \(x \in K(\mathcal{E}') \). Then \(x \notin \text{Int}(\bigcup (\mathcal{E} \sim \mathcal{E}')) \) and it follows, since \(x \in \text{Int}(\bigcup (\mathcal{E})_x) \), that we have \((\mathcal{E})_x \cap \mathcal{E}' \neq \emptyset \), in other words, \(x \in \bigcup \mathcal{E}' \).

Since \(x \in K((\mathcal{E})_x) \) for each \(x \in X \), it follows from the foregoing that the closed family \(\mathcal{K} = \{ K(\mathcal{E}') | \mathcal{E}' \subset \mathcal{E} \} \) is an \(F \)-refinement of \(\mathcal{E} \). To show that \(\mathcal{K} \) is locally finite, let \(x \in X \). Since \(\mathcal{E} \) is locally finite, the subfamily \(\mathcal{E}^* = \{ L \in \mathcal{E} | x \in L \} \) is finite and the open set \(O = X - \text{Cl}(\bigcup (\mathcal{E} \sim \mathcal{E}^*)) \) contains \(x \). If \(\mathcal{E}' \subset \mathcal{E} \) and \(K(\mathcal{E}') \cap O \neq \emptyset \), then \([\text{Cl}(\bigcap \mathcal{E}')] \cap O \neq \emptyset \) and hence \((\bigcap \mathcal{E}') \cap O \neq \emptyset \). It follows that if \(K(\mathcal{E}') \cap O = \emptyset \), then \(\mathcal{E}' \subset \mathcal{E}^* \); hence the neighborhood \(O \) of \(x \) intersects only finitely many sets of the family \(\mathcal{K} \). □
In the next section, we use the result of Lemma 1.1 to derive a characterization of paracompactness in terms of the existence of locally finite semi-open refinements of certain open covers. It is not difficult to see that a point-finite semi-open (or even open) cover of a topological space does not always have a point-finite semi-open F-refinement by closed sets (see the remark following Theorem 2.2 below). To be able to characterize metacompactness in terms of point-finite semi-open refinements, we show that the existence of such refinements implies the existence of certain open refinements.

Let \mathcal{L} and \mathcal{R} be covers of X. We say that \mathcal{R} is a point-wise W-refinement of \mathcal{L} if for each $x \in X$, there exists a finite subfamily \mathcal{L}' of \mathcal{L} such that for each $N \in (\mathcal{R})_x$, we have $N \subset L$ for some $L \in \mathcal{L}'$.

Lemma 1.2. If an open cover of a topological space has a point-finite semi-open refinement, then the cover has an open point-wise W-refinement.

Proof. Let \mathcal{L} be a point-finite semi-open refinement of an open cover \mathcal{U} of X. For each $L \in \mathcal{L}$, let $U(L) \in \mathcal{U}$ be such that $L \subset U(L)$. For each $x \in X$, denote by $\mathcal{U}(x)$ the finite subfamily $\{U(L) | L \in (\mathcal{L})_x\}$ of \mathcal{U} and denote by $V(x)$ the open neighborhood $[\text{Int } St(x, \mathcal{L})] \cap [\cap \mathcal{U}(x)]$ of x. We show that the open cover $V = \{V(x) | x \in X\}$ of X is a point-wise W-refinement of the cover \mathcal{U}. Let $x \in X$ and let $y \in X$ be such that $x \in V(y)$. Then $x \in St(y, \mathcal{L})$ and hence there exists $L \in \mathcal{L}$ such that $x \in L$ and $y \in L$. For the set $U(L)$, we have $U(L) \in \mathcal{U}(x)$ and $V(y) \subset U(L)$. We have shown that for each $V \in (\mathcal{V})_x$, we have $V \subset U$ for some member U of the finite subfamily $\mathcal{U}(x)$ of \mathcal{U}. □

Our remaining lemmas deal with the preservation of the property of semi-openness in certain topological operations.

Lemma 1.3. Let \mathcal{L} be a point-finite semi-open cover of X and for each $L \in \mathcal{L}$, let $\mathcal{U}(L)$ be a (point-finite) semi-open cover of the subspace L of X. Then the family $\mathcal{R} = \bigcup \{\mathcal{U}(L) | L \in \mathcal{L}\}$ is a (point-finite) semi-open cover of X.

Proof. It is easily seen that the family \mathcal{R} is point-finite if the families \mathcal{L} and $\mathcal{U}(L)$, $L \in \mathcal{L}$, are all point-finite. To show that \mathcal{R} is a semi-open cover of X, let $x \in X$. For each $L \in (\mathcal{L})_x$, the set $St(x, \mathcal{U}(L))$ is a neighborhood of x in the subspace L of X and it follows that there exists a neighborhood $O(L)$ of x in X such that $O(L) \cap L = St(x, \mathcal{U}(L))$. The set $O = [St(x, \mathcal{L})] \cap [\cap \{O(L) | L \in (\mathcal{L})_x\}]$ is a neighborhood of x in X. We show that $O \subset St(x, \mathcal{R})$. Let $y \in O$. Then $y \in St(x, \mathcal{L})$ and hence there exists $L \in (\mathcal{L})_x$ such that $y \in L$. But then we have $y \in L \cap O(L) = St(x, \mathcal{U}(L)) \subset St(x, \mathcal{R})$. Hence $O \subset St(x, \mathcal{R})$ and the set $St(x, \mathcal{R})$ is a neighborhood of x. □

A mapping f from X onto a topological space Y is called pseudo-open ([1]); in [8] these were called P_1-mappings) provided that for each $y \in Y$, whenever U is a neighborhood of the set $f^{-1}\{y\}$ in the space X, then the set $f(U)$ is a
neighborhood of the point \(y \) in the space \(Y \).

Lemma 1.4. Let \(X \) and \(Y \) be topological spaces, let \(\mathcal{L} \) be a semi-open cover of \(X \) and let \(f \) be a pseudo-open mapping from \(X \) onto \(Y \). Then the family \(\mathcal{H} = \{ f(L) | L \in \mathcal{L} \} \) is a semi-open cover of \(Y \).

Proof. The conclusion follows directly from the definitions, since we have \(\text{St}(y, \mathcal{H}) = f(\text{St}(f^{-1}(y), \mathcal{L})) \) for every \(y \in Y \).

2. **On paracompactness and metacompactness.** We start by characterizing paracompactness. Recall that a family \(\mathcal{H} \) of sets is **monotone** provided that the relation \(\subset \) of set inclusion is a linear order on \(\mathcal{H} \).

Theorem 2.1. A topological space is paracompact if, and only if, every monotone open cover of the space has a locally finite semi-open refinement.

Proof. Necessity of the condition is obvious. To prove sufficiency, assume that every monotone open cover of \(X \) has a locally finite semi-open refinement. For every cardinal number \(k \), denote by \(P(k) \) the following proposition: if \(\mathcal{U} \) is an open cover of \(X \) with \(|\mathcal{U}| = k \), then \(\mathcal{U} \) has a locally finite closed \(F \)-refinement. We observe that \(P(k) \) is trivially true for \(k \) finite and we use transfinite induction to show that \(P(k) \) holds in general. Let \(k \) be an infinite cardinal number such that \(P(h) \) holds for every \(h < k \). To show that \(P(k) \) holds, let \(\mathcal{U} \) be an open cover of \(X \) with \(|\mathcal{U}| = k \). We represent \(\mathcal{U} \) in the form \(\mathcal{U} = \{ U_\alpha | \alpha < \gamma \} \), where \(\gamma \) is the initial ordinal ordinal corresponding to the cardinal \(k \). For each \(\alpha < \gamma \), let \(V_\alpha = \bigcup_{\beta < \alpha} U_\beta \). Then the family \(\mathcal{V} = \{ V_\alpha | \alpha < \gamma \} \) is a monotone open cover of \(X \). The cover \(\mathcal{V} \) has a locally finite semi-open refinement and it follows from Lemma 1.1 that \(\mathcal{V} \) has a locally finite closed \(F \)-refinement, say \(\mathcal{K} \). Let \(K \) be a member of the family \(\mathcal{K} \). Then \(K \) is contained in some finite union of sets of the family \(\mathcal{V} \) and it follows, since \(\mathcal{V} \) is a monotone family, that \(K \) is contained in some set of \(\mathcal{V} \). Let \(\alpha(K) < \gamma \) be such that \(K \subset V_{\alpha(K)} \). The family \(\mathcal{W}(K) = \{ X \sim K | \} \cup \{ U_\alpha | \alpha < \alpha(K) \} \) is an open cover of \(X \) and we have \(|\mathcal{W}(K)| < k \). By the induction assumption, \(\mathcal{W}(K) \) has a locally finite closed \(F \)-refinement, say \(\mathcal{S}(K) \). For every \(K \in \mathcal{K} \), the family \(\mathcal{S}(K) = \{ F \cap K | F \in \mathcal{S}(K) \} \) is a locally finite closed cover of the subspace \(K \) of \(X \). Since \(\mathcal{K} \) is a locally finite and closed cover of \(X \), it follows that the family \(\mathcal{S} = \bigcup \{ \mathcal{S}(K) | K \in \mathcal{K} \} \) is also a locally finite and closed cover of \(X \). It is easily seen that every set of the family \(\mathcal{S} \) is contained in some finite union of sets of the cover \(\mathcal{U} \); hence \(\mathcal{S} \) is an \(F \)-refinement of \(\mathcal{U} \). We have shown that \(P(k) \) holds. This completes the induction.

It follows from the foregoing that every open cover of \(X \) has a locally finite closed \(F \)-refinement. Since a directed cover (see [7]) is an \(F \)-refinement of itself, it follows that every directed open cover of \(X \) has a locally finite closed refinement. By Corollary 6 of [7], the space \(X \) is paracompact. □

Theorem 2.1 generalizes some results of J. Mack [7].
It is not known if the existence of point-finite semi-open refinements for all monotone open covers of a topological space is sufficient for the space to be metacompact; however, we have the following result:

Theorem 2.2. A topological space is metacompact if, and only if, every open cover of the space has a point-finite semi-open refinement.

Proof. Necessity is obvious and sufficiency follows directly from Lemma 1.2 and the result of J. M. Worrell Jr. that a topological space is metacompact if every open cover of the space has an open point-wise W-refinement [11].

Using Theorem 2.2 and the technique used in the proof of Theorem 2.1, it can be shown that a topological space is metacompact if every monotone open cover of the space has a point-finite semi-open closed refinement; for normal spaces this condition is also necessary, since every point-finite open cover of a normal space has an open shrinking (see e.g. [3, Theorem 1.5.18]). In general, however, monotone open covers of metacompact spaces do not necessarily have point-finite semi-open closed refinements (to see this, consider the monotone open cover $\{X \sim \{1/k|k > n\}|n \in \mathbb{N}\}$ of the space X of Example 5.3.4 of [3]).

We close this paper with two corollaries to Theorem 2.2.

Corollary 2.3. A topological space is metacompact if it has a point-finite semi-open cover such that every set of the cover is contained in some metacompact subspace of the space.

Proof. Assume that X has a point-finite semi-open cover \mathcal{L} such that for each $L \in \mathcal{L}$, there exists a metacompact subspace $M(L)$ of X such that $L \subset M(L)$. To show that X is metacompact, let \mathcal{U} be an open cover of X. For each $L \in \mathcal{L}$, the family $\mathcal{U}|M(L) = \{U \cap M(L)|U \in \mathcal{U}\}$ is an open cover of the subspace $M(L)$ of X and hence there exists a point-finite open cover $\mathcal{K}(L)$ of the subspace $M(L)$ such that $\mathcal{K}(L)$ is a refinement of $\mathcal{U}|M(L)$. For each $L \in \mathcal{L}$, the family $\mathcal{K}'(L) = \{N \cap L|N \in \mathcal{K}(L)\}$ is a point-finite open cover of the subspace L of X. It follows from Lemma 1.3 that the family $\mathcal{K} = \bigcup \{\mathcal{K}'(L)|L \in \mathcal{L}\}$ is a point-finite semi-open cover of X and it is easily seen that the family \mathcal{K} is a refinement of the cover \mathcal{U}. By the foregoing and Theorem 2.2, the space X is metacompact.

R. E. Hodel has shown in [5] that the Locally Finite Sum Theorem holds for metacompactness; since a locally finite closed cover is semi-open, Corollary 2.3 generalizes Hodel's result. It is well known that the analogue of the result of Corollary 2.3 for paracompactness is false; for instance, in [4] there is an example of a nonparacompact Moore space that is the union of two open metrizable subspaces. However, the Locally Finite Sum Theorem also holds for paracompactness ([10]; for regular spaces, [9]).

In [2], A. V. Arhangel'skii proved that a continuous image of a metrizable space under a pseudo-open and compact mapping is metacompact and he
asked whether this result remains true if “metrizable” is replaced by “paracompact”; the following result shows that the answer to this question is in the affirmative.

Corollary 2.4. A continuous image of a paracompact space under a pseudo-open and compact mapping is metacompact.

Proof. Let X be a paracompact space, and let f be a pseudo-open, compact and continuous mapping from X onto a topological space Y. To show that Y is metacompact, let \mathcal{U} be an open cover of Y. Then the family $\mathcal{V} = \{f^{-1}(U) | U \in \mathcal{U}\}$ is an open cover of X. Let \mathcal{V} be a locally finite open refinement of \mathcal{V} and let $\mathcal{M} = \{f(V) | V \in \mathcal{V}\}$. It is easily seen that \mathcal{M} is a refinement of the cover \mathcal{U} of Y and it follows from Lemma 1.4 that \mathcal{M} is a semi-open cover of Y. We also see that the family \mathcal{M} is point-finite since for each $y \in Y$, the compact subset $f^{-1}\{y\}$ of X meets only finitely many sets of the locally finite family \mathcal{V}. We have shown that every open cover of Y has a point-finite semi-open refinement. By Theorem 2.2, the space Y is metacompact. □

Note that the above proof can be modified so as to yield the following result: a continuous image of a metacompact space under a pseudo-open and finite-to-one mapping is metacompact.

References

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Current address: Department of Mathematics and Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260