CRYSTALLISATIONS OF 2-FOLD BRANCHED COVERINGS OF S^3

MASSIMO FERRI

Abstract. We describe the construction of a crystallisation of a 2-fold cyclic covering space of S^3 branched over a link, from a bridge-presentation of the branch set.

An n-dimensional ball-complex is said to be a contracted triangulation of its underlying polyhedron if it satisfies the following conditions:

(i) each n-ball, considered with all its faces, is abstractly isomorphic to a closed n-simplex;

(ii) the number of 0-balls (vertices) is exactly $n + 1$.

A crystallisation of a closed, connected PL manifold M of dimension n is the edge-coloured graph, regular of degree $n + 1$, obtained by taking the 1-skeleton of the cellular subdivision dual to a contracted triangulation of M, and by labelling the dual of each $(n - 1)$-simplex by the vertex it does not contain. All topological information on M is contained in such an abstract graph.

A contracted triangulation turns out to be a minimal "pseudodissection" (in the sense of [HW]). The advantage of a pseudodissection is that its incidence structure may be simpler (often much simpler) than the one of a simplicial complex triangulating the same space, while the cells composing it still are simplexes. When the space is a manifold, minimality yields: (1) the existence of a "minimal" atlas (in the sense of $[P_1]$), and (2) the representation by a crystallisation, which, as a graph, belongs to a very circumscribed class (see [F]; in dimension 3 the characteristics of this class are very easy to check). For 3-manifolds, crystallisations are not very different from Heegaard diagrams (see $[P_2]$), with the advantage that the representation is completely graph-theoretical, the embedding into a splitting surface being possible but not necessary (also, a crystallisation embeds into three generally nonequivalent splitting surfaces). As a consequence, methods for finding invariants,
which are typical of Heegaard diagrams, can be generalised to any dimension (see [G]). Furthermore, moves of crystallisations appear to be simpler and more direct (in any dimension!) than Singer moves in dimension 3. A survey on these items can be found in [FGj].

A general algorithm exists, which generates a contracted triangulation from a (standard) triangulation of any closed, connected PL manifold (see [P], [FG]). Here we give a much faster construction for the case described in the title. For definitions and properties that we use here without quotation, see [B] and [BH].

Construction. Given a bridge-presentation of a link L, consider the plane graph \(\mathcal{P} \) formed by its projection on the plane \(z = 0 \); \(\mathcal{P} \) can always be assumed to be connected.\(^2\) Call \(\mathcal{B}_1, \ldots, \mathcal{B}_m \) the projections of the “bridges”. We can assume that L intersects all \(\mathcal{B}_i \)'s at right angles.

1. Draw, on the plane \(z = 0 \), \(m \) ellipses \(\mathcal{E}_1, \ldots, \mathcal{E}_m \), having \(\mathcal{B}_1, \ldots, \mathcal{B}_m \), respectively, as major axes, so as to let each of them intersect each arc of \(\mathcal{P} \) at most once.\(^3\) Let \(\mathcal{V} \) be the set of points of intersection between the ellipses and L. \(\mathcal{V} \) separates the part of L lying on \(z = 0 \) into edges; call \(\mathcal{C} \) the set of such edges interior to the ellipses, \(\mathcal{D} \) the set of edges exterior to them.

2. Call \(\mathcal{C} \) the involution on \(\mathcal{V} \) which interchanges the end-points of the edges of \(\mathcal{C} \), leaving the points of \(\bigcup_i (\mathcal{E}_i \cap \mathcal{B}_i) \) fixed; call \(\mathcal{S} \) the involution on \(\mathcal{V} \) which interchanges the end-points of the edges of \(\mathcal{D} \). \(\mathcal{V} \) also separates the ellipses into even numbers of edges; call \(\mathcal{F} \) the set of all such edges.

3. Label all edges of \(\mathcal{D} \) with “colour” a. Then label all edges on \(\mathcal{E}_1 \) alternatively with c and d, starting arbitrarily. Complete the colouring on \(\mathcal{F} \) with c and d, following the rule that each of the “polygons”, determined on the plane \(z = 0 \) by \(\mathcal{F} \cup \mathcal{C} \), is to be bounded by edges of only two colours (note that the edges in each boundary different from \(\mathcal{E}_1, \ldots, \mathcal{E}_m \), belong alternatively to \(\mathcal{F} \) and to \(\mathcal{D} \)).

4. Draw a further set \(\mathcal{D}' \) of edges, each connecting a pair of points of \(\mathcal{V} \) which correspond under the involution \(\mathcal{S} \circ \mathcal{Y} \). Label the elements of \(\mathcal{D}' \) with colour b.

The graph \(\mathcal{G} \) which has \(\mathcal{V} \) as vertex set, and \(\mathcal{D} \cup \mathcal{D}' \cup \mathcal{F} \) as edge set, with the above colouring, is regular of degree 4, and no two adjacent edges have the same colour. Figure 1 illustrates the construction for a presentation of the trefoil knot.

Given any edge \(e \) of \(\mathcal{G} \), if \(P, P' \) denote its end-points, then \(\gamma(P) \) and \(\gamma(P') \) are end-points of a (unique) edge \(\mathcal{S} \). In fact, if \(P, P' \) both lie on \(\mathcal{E}_i \), \(\mathcal{S} \) is the symmetric of \(e \) with respect to \(\mathcal{B}_i \); if not, \(\mathcal{S} \) is given by step (3) of the construction. Therefore we have:

\(^2\)This is immediate if L is nonsplitting. If L splits into a number of links, one can isotope arcs of L on the plane \(z = 0 \), to pass “in and out” under bridges of different components, without changing the link type.

\(^3\)It is not necessary to use ellipses; any drawing continuously deformable to the one described here, works as well.
Lemma. γ determines a unique involutory automorphism σ of \mathcal{G} which interchanges \mathcal{D} with \mathcal{D}' and c-coloured edges with d-coloured edges. □

We can now prove:

Proposition. The 4-coloured graph \mathcal{G} is the crystallisation of a closed, connected 3-manifold M. Moreover, M is a 2-fold cyclic covering space of S^3 branched over L.
Proof. For each $x = a, b, c, d$, call \mathcal{G}_x the partial graph of \mathcal{G} obtained by deleting all x-coloured edges. In view of Proposition 10 of [P2], the first part of the statement will be proved, if we show, for each colour x, that:

(i) \mathcal{G}_x is connected;

(ii) \mathcal{G}_x can be embedded in a plane so that each 2-cell is bounded by edges with only two colours.

Actually, by the lemma above, we can restrict our attention to $x = b, d$. (i) follows from the assumed connectedness of \mathcal{G}. (ii) comes from the construction itself (step (2)). To show (ii), note that \mathcal{G}_d has the same number of components as the graph \mathcal{G}_b' obtained by deleting also the edges of \mathcal{G}' and setting back the ones of \mathcal{G}; by shrinking the edges of \mathcal{G} to points, we get the graph \mathcal{G} back, which is connected.

To show (ii), note first that to each edge $e \in \mathcal{G}'$ there corresponds a path cbe' connecting the same vertices, with $c, c' \in \mathcal{G}, b \in \mathcal{G}$. So, when drawing (not embedding) \mathcal{G} in the plane $z = 0$, we could have drawn e within e from the path cbe' and without intersecting it; moreover, we could have chosen that e intersects one, of the two ellipses it has to meet, in a d-coloured edge; then it is bound to intersect also the other ellipse in a d-coloured edge (by the rule of step (2)). Doing so for each $e \in \mathcal{G}'$, then deleting all the d-coloured edges, we get an embedding of \mathcal{G}_d in the plane $z = 0$. For finding out, how the 2-cells are, a comparison with \mathcal{G}_b turns useful: the ac-bounded cells of \mathcal{G}_d are the same as in \mathcal{G}_b; the ad-bounded cells of \mathcal{G}_b turn to the bc-bounded cells of \mathcal{G}_d', when enlarged with regions inside the ellipses, and deprived of the e-wide strips; the cd-bounded cells of \mathcal{G}_b disappear, and the strips build up the ab-bounded cells of \mathcal{G}_d' (see Figure 2). Thus \mathcal{G} is the crystallisation of a closed, connected 3-manifold M.

Figure 2

\mathcal{G} represents a particular contracted triangulation of M; in [P2] it is shown, how to cut its 3-simplices into prismi, generating a Heegaard splitting Y.
There are essentially three ways of doing this, and in each, either handlebody boundary exhibits a copy of \mathcal{G}, as 1-skeleton of the decomposition dual to the one induced by the contracted triangulation. The (cellular) identification homeomorphism φ: $\partial Y \to \partial Y'$ is determined (up to isotopy) by the condition that the two copies of \mathcal{G} are identified by it. In one of these splittings, the ab-cycles (cycles coloured with a and b) are meridian circles of Y, and the cd-cycles are meridian circles of Y' (the splitting is thus of genus $m - 1$) (see [P2]).

It is possible to embed Y and Y' in \mathbb{R}^3, so that they are invariant under a rotation T of π radians about the x-axis. As one can see, assuming that all \mathcal{B}_i's lie on the x-axis, it is also possible to embed \mathcal{G} on ∂Y, $\partial Y'$ so that T induces the automorphism θ of the lemma on it. This implies that the cellular subdivisions of the handlebodies can be so arranged, that T is cellular on them. Call D, D' the orbit spaces Y / T, Y' / T respectively (with the induced cellular subdivisions); we will denote by π all canonical projections to orbit spaces. Note that the orbit space of each copy of \mathcal{G} under T (i.e. \mathcal{G} / θ) is isomorphic to \mathcal{P}, by an isomorphism which takes orbits of \mathcal{G} to \mathcal{P}, and orbits of ab-cycles to arcs of L.

From what was previously said, φ commutes with T, hence it induces a homeomorphism ψ: $\partial D \to \partial D'$ which identifies the two copies of \mathcal{P} on ∂D and $\partial D'$. The fixed point sets of T in Y and Y' are $Y_x = Y \cap (x$-axis) and $Y'_x = Y' \cap (x$-axis) respectively, which are sets of m unlinked, unknotted arcs; these project, by π, to arcs $a_1, \ldots, a_m \subset D$, $a'_1, \ldots, a'_m \subset D'$, with $a_i \cap \partial D = \partial a_i$, $a'_i \cap \partial D' = \partial a'_i$. The map

$$\pi: (Y, Y_x) \cup_{\varphi} (Y', Y'_x) \to \left(D, \bigcup_i a_i \right) \cup_{\psi} \left(D', \bigcup_i a'_i \right).$$

where the second space is a $2m$-plat, is a 2-fold cyclic branched covering projection on S^3; the branch set L' is the identification space of $\bigcup a_i$ and $\bigcup a'_i$. We can set $D = \{(x, y, z) \in \mathbb{R}^3 | z < 0\} \cup \{\infty\}$, $D' = \{(x, y, z) \in \mathbb{R}^3 | z > 0\} \cup \{\infty\}$, in the one-point compactification of \mathbb{R}^3. We can also assume that the two identified copies of \mathcal{P} actually coincide with \mathcal{P}, and that a'_1, \ldots, a'_m are the “bridges” of L.

Now, if we substitute a_1, \ldots, a_m with the orbit spaces of the (meridian) ab-cycles of Y, we get a link ambient isotopic to L' by an isotopy i, of S^3. But this link is exactly L. Composing π with $(i_i)^{-1}$, we get the desired result. □

References

Istituto di Geometria L. Cremona, Università di Bologna, 40127 Bologna, Italy