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PRINCIPAL CONGRUENCES OF

PSEUDOCOMPLEMENTED SEMILATTICES AND

CONGRUENCE EXTENSION PROPERTY

H. P. SANKAPPANAVAR

Abstract. Principal congruences of pseudocomplemented semilattices are

characterized and shown to be definable. This characterization is then

applied to give a new proof of the fact that the variety of pseudocomple-

mented semilattices has the congruence extension property.

1. Introduction. In this note1 the principal congruences of pseudocomple-

mented semilattices are characterized. We then give, as an application of this

characterization, a new (direct) proof of the fact that the variety of pseudo-

complemented semilattices has the congruence extension property, a result

which was first proved by Jones [8] using the corresponding result for

pseudocomplemented distributive lattices of Grätzer and Lakser [7]. More-

over, our characterization shows that the variety in question has definable

principal congruences in the sense of Baldwin and Berman [1], indicating how

the defining formula can be explicitly written down. For an analogous

characterization and the definability of principal congruences of pseudo-

complemented distributive lattices see Lakser [9], and the definability of

principal congruences of semilattices is implicit in Dean and Oehmke [4],

while Fried and Grätzer [6] have shown that the principal congruences in the

variety (of weakly associative lattices) generated by Z, the smallest

nontransitive tournament, are definable.

2. Main result. An algebra (S; A, *, 0> is a pseudocomplemented semilattice

(PCS) iff <5; A. 0> is a A-semilattice with least element 0 and * is a unary

operation on S such that for a E S, a* is the pseudocomplement of a in S,

i.e., x A a = 0 in S iff x < a*. The class of PCS's is known to be an

equational class (cf. [2]). In this paper S denotes a PCS and 0* (being the
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greatest element) is denoted by 1. It is well known (cf. [5]) that the set B(S) of

closed elements a (i.e., a = a**) of S is a Boolean algebra whose meet and

complement operations are respectively the meet and * in S and whose join

operation V is given by

a\J b = (a* /\b*)*.

From this one notes that an equivalence relation on 5(5) is a congruence (in

the usual sense) iff it is a congruence when B(S) is regarded as a PCS.

Lemma 1. Let a, b E S be such that a < b and a* = b*. Then the principal

congruence 6(a,b) is characterized by x = y (9 (a, b)) iff either x = y, or

x < b,y < b and x /\a = y /\a. Moreover, x = y (9 (a, b)) implies x* = y*.

Proof. Use the fact that a < b** implies (a A b)* = a* in any PCS.

For a, b in 5 let us denote by #semilat(a, b) the principal semilattice-

congruence on S, regarding S simply as a semilattice, generated by <a, b}.

Then it should be noted from Lemma 1 and a result in Dean and Oehmke [4]

that if a, b are as in Lemma 1 then 0semilat(a, b) is indeed a (PCS-) congruence

onS.

For a E S, define a relation â on S as follows:

<x, y) E â   iñ x f\ a — y /\ a,       x, y E S.

Then using the identity x A (■* A v)* = x A y* true in any PCS one readily

sees that â is a congruence on S; moreover it is easily observed from Dean

and Oehmke that 9 (a, 1) = â = 0semilat(a, 1).

Lemma 2. Let t E S and i/> E Con S, the congruence lattice of S. Then

'V>r' = t ° \p ° t (where  °  denotes relative product).

Proof. It suffices to prove \¡/°t°\pQt°\p°t. Let x uV x, t x2 $ y. Since

*i A t = x2 A t, we get x tx A t «p x, A t = x2 A 11//y A t t'y.

We are now ready to give the main result characterizing the principal

congruences.

Theorem 1. Let a,b E S. Then

Ha, b) = 0semilat((a* A by A (a A b*)*, 1)

°0Semi>a. («A *>**,*** A ¿)

°0semlat((a*A6)*A(aA6T>l)-

Proof. We know (a*, b*} E 9 (a, b), so (a* A*,0)e 9 (a, b) which

implies ((a* A b)*, l)E9(a,b) and by symmetry, ((a A ¿*)*, l)ei(a, b),

hence <(a* A ¿)* A (a A 6*)*, 1> e tf (a, 6), thus we get 0semilat((a* A 6)* A

(a A ¿*)*, 1) Q 9(a, b). Also we have <a A ***, ¿>> G 0(a, Z>) and <a, a** A

*> E » (a, b), so <a A **•, a** A b) E 9 (a, b) which gives that 0semilat(a A

b**,a** Ab)Q9(a,b).
Thus, to complete the proof we only need to show that {a, b) belongs to

the expression on the right side of the equation. Now it is straightforward to
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verify that

a** A[(«* A b**)* A (a** A b*)*]

= b** A[(a* A ***)* A («** A 6*)*].

Hence from the observation immediately preceding Lemma 2 it follows that

(a**, b**) is in 0semilat((a* A b*)* A (a A &*)*, 1) which implies that <a, a

A b**} and <a** A ¿>, b} are also in this congruence. Then it is immediate

that (a, b) belongs to the expression on the right of the equation. This

completes the proof.

Lemma 3. Let a, b E S with a* = b*. Then

9(a, b) = (9(a, a Ab) ° 9(a Ab, b))

l){9(aAb,b)°9(a,aAb)).

Proof. Let \px = 9 (a, a A b) and t|/2 = 9 (a A b, b); then it suffices to

show that (\px ° ^2) U (^2 ° »Pi)iS transitive. Let us first suppose that (x,y} G

\px ° \p2 and (y, z> G \LX ° ty2. Then x \px t \p2 y tp, u \p2 z for some t, uva. S.

From this one easily checks using Lemma 1 that x A b = z A o, and hence

x \px x A b and z A o ^2 2> implying x »//, ° \p2y. Next let <x,>>> Gf °f2

and (y, z) E \p2 ° \¡/x. Then for some /, u G S we have x i//, í ^^ \f/2u\¡/x z

and so x »p, / ^2 " ^1 z- Applying Lemma 1 one sees that r = u and hence

x \px z. The other cases being similar, the proof is complete.

From Lemmas 1 and 3 it follows immediately that 9 (a, b) with a* — b* is

definable while it is clear that t is definable and hence from Theorem 1 we

conclude immediately the following.

Corollary. TAe variety of pseudocomplemented semilattices has definable

principal congruences.

Proof. By looking at Lemmas 1, 2 and 3 and Theorem 1 the reader can

easily write down the formula which defines a principal congruence.

3. Application. Recall that a class of algebras K has the congruence

extension property (CEP) iff given A, B E K, A a subalgebra of B, then every

congruence 9 on A is the restriction of some congruence on A.

Jones [8] has proved that the variety PCS of pseudocomplemented semi-

lattices has CEP. In his proof he associates with each PCS a pseudocomple-

mented distributive lattice in a suitable way and then uses a result of Grätzer

and Lakser [7] which says that the class of distributive pseudocomplemented

lattices has CEP. Since a PCS has already a semilattice structure built into it

and the semilattices are known to have CEP, one is naturally led to ask

whether it is possible to use this property of semilattices to prove Jones'

result, instead of going through distributive pseudocomplemented lattices. We

now give, as an application of Theorem 1, a positive answer to this question.

For this purpose we need the following lemma.
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Lemma 4. Let Sx be a PCS-subalgebra of S, t E Sx, and let a E Con S.

Then

(t\a)\s¡ = (i)\s¡ V («)|s, = (Ôls, • (a)\s, ° (t)\s,

Proof. It is obvious that the expression on the extreme right is contained in

the one on the left. Let <x, y> E (/*V a)\s,- Since (x, y> E t\/ a, there exist

elements x = x0, x,, . . . , x„ = y in S such that

x = x0 t xx a x2 t x3 a ■ ■ ■ a xn= y.

Then we get

x A t = xx A t a x2 A t = x3 A t a • ■ ■ ay At-

From this it follows that <x A t, y A *> £ «. Since x,y, t E Sx, we thus have

<x A t,y A 0 G (a)ls,- Also we know <x, x A '> e ' an<i (y At,y}€ t

and hence (x, xA')e (Ols an^ (y A t,y) E (t)\s . Then it immediately

follows that <x, y) E (i)|s ° (a)|s ° (Ois i proving the lemma.

Theorem 2. The class PCS has CEP.

Proof. Let Sx be a PCS-subalgebra of S and let a,bESx. Suppose

9s'(a, b) denotes the principal congruence on S, generated by {a, b} and

9 s (a, b) the principal congruence on S generated by <a, ¿>>. Then by

Theorem 1 we have

9s (a, b) = 0semilat s ((a* Ab)* A (a A 6*)*, 1)

V9semms(aAb**,a**Ab).

Hence by Lemma 4 we get

9s (a, b)\s¡ = (0semilat s ((a* A b)* A (a A b*)*, l))|s,

V(9^^xs(aAb**,a**Ab))\St.

Using the CEP of semilattices we obtain

(9sem^s((a* Ab)* A(aAb*)*,l))\Si

-»—*,((«• A*)* A («A *T.l)

and

(Ösemi,at5(« A ft", «** A ft))|S| = Ösemilats, (a A b**, a** A ft).

Thus we have

0s (a, 6)|,, = 0semiia, 5, ((a* A ft)* A (a A ft*), 1)

V0semilatS|(«Aft**,***Aft).

From this it follows using Theorem 1 again that 9 s (a, b)\s¡ = 9S{(a, ft). Then

by a theorem in Day [3] we see that the claßs PCS has CEP, proving the

theorem.
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Concluding remarks. Baldwin and Berman [1] showed that if a variety is

locally finite and has CEP then it has definable congruences. Jones [8] has

proved that the variety PCS is locally finite. Accepting the proof of Jones [8]

of the fact that PCS has CEP, it then follows from the above result of

Baldwin and Berman that the PCS has definable congruences. (Theorem 1

was proved before the Baldwin-Berman result.) It is indeed interesting to

compare this with our present work wherein we first showed that PCS has

definable congruences by giving an explicit formula (without using CEP!) and

then we used it to show that PCS has CEP.

It would be interesting to see if the CEP of pseudocomplemented distribu-

tive lattice can be deduced (we suspect so) from that of pseudocomplemented

semilattices.
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