Reflexive modules over certain differential polynomial rings
HTML articles powered by AMS MathViewer
- by A. Haghany
- Proc. Amer. Math. Soc. 73 (1979), 313-318
- DOI: https://doi.org/10.1090/S0002-9939-1979-0518511-6
- PDF | Request permission
Correction: Proc. Amer. Math. Soc. 82 (1981), 314.
Abstract:
Let K be a commutative Noetherian integral domain with a derivation d and let $R = K[x,d]$. When K is quasi-normal and d is suitably restricted we shall give several equivalent conditions for an R-module to be reflexive. The relations between K and R in the context of reflexivity are also investigated.References
- K. R. Goodearl, Global dimension of differential operator rings, Proc. Amer. Math. Soc. 45 (1974), 315–322. MR 382358, DOI 10.1090/S0002-9939-1974-0382358-X
- K. R. Goodearl, Global dimension of differential operator rings. II, Trans. Amer. Math. Soc. 209 (1975), 65–85. MR 382359, DOI 10.1090/S0002-9947-1975-0382359-7
- Ahmad Haghany, On duality and Krull-dimension, J. London Math. Soc. (2) 14 (1976), no. 1, 79–85. MR 419518, DOI 10.1112/jlms/s2-14.1.79
- Ahmad Haghany, Reflexive ideals in simple Ore extensions, J. London Math. Soc. (2) 16 (1977), no. 3, 429–436. MR 466226, DOI 10.1112/jlms/s2-16.3.429
- Robert Hart, Krull dimension and global dimension of simple Ore-extensions, Math. Z. 121 (1971), 341–345. MR 297759, DOI 10.1007/BF01109980
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Wolmer V. Vasconcelos, Quasi-normal rings, Illinois J. Math. 14 (1970), 268–273. MR 257126
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 73 (1979), 313-318
- MSC: Primary 16A05
- DOI: https://doi.org/10.1090/S0002-9939-1979-0518511-6
- MathSciNet review: 518511