Summability factors for Cesàro methods
HTML articles powered by AMS MathViewer
- by David F. Dawson
- Proc. Amer. Math. Soc. 73 (1979), 371-374
- DOI: https://doi.org/10.1090/S0002-9939-1979-0518523-2
- PDF | Request permission
Abstract:
It is shown that if each of r and s is a nonnegative integer and $\{ {f_p}\}$ is a complex sequence such that $\Sigma {f_p}{a_p}$ is Cesàro summable of order s whenever $\Sigma {a_p}$ is Cesàro summable of order r, then $\Sigma {f_p}{a_p}$ is Cesàro summable of order r whenever $\Sigma {a_p}$ is Cesàro summable of order r.References
- David F. Dawson, A generalization of a theorem of Hans Hahn concerning matrix summability, Boll. Un. Mat. Ital. (4) 3 (1970), 349–356. MR 0265813 Tetsuzo Kojima, On generalized Toeplitz’s theorems on limit and their applications, Tôhoku Math. J. 12 (1917), 291-326.
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 73 (1979), 371-374
- MSC: Primary 40G05
- DOI: https://doi.org/10.1090/S0002-9939-1979-0518523-2
- MathSciNet review: 518523