An extremal problem for polynomials with a prescribed zero. II
HTML articles powered by AMS MathViewer
- by Q. I. Rahman and G. Schmeisser
- Proc. Amer. Math. Soc. 73 (1979), 375-378
- DOI: https://doi.org/10.1090/S0002-9939-1979-0518524-4
- PDF | Request permission
Abstract:
Improving upon an earlier estimate it is shown that if ${p_n}(z)$ is a polynomial of degree at most n such that ${p_n}(1) = 0$ and ${\max _{|z| = 1}}|{p_n}(z)| \leqslant 1$, then $|{p_n}(0)| < 1 - (1.03369)/n + O(1/{n^2})$.References
- Francis P. Callahan Jr., An extremal problem for polynomials, Proc. Amer. Math. Soc. 10 (1959), 754–755. MR 114902, DOI 10.1090/S0002-9939-1959-0114902-3
- A. Giroux and Q. I. Rahman, Inequalities for polynomials with a prescribed zero, Trans. Amer. Math. Soc. 193 (1974), 67–98. MR 352427, DOI 10.1090/S0002-9947-1974-0352427-3
- Problems in complex function theory, Bull. London Math. Soc. 4 (1972), 354–366. MR 480954, DOI 10.1112/blms/4.3.354
- Q. I. Rahman and G. Schmeisser, Some inequalities for polynomials with a prescribed zero, Trans. Amer. Math. Soc. 216 (1976), 91–103. MR 399427, DOI 10.1090/S0002-9947-1976-0399427-7
- Q. I. Rahman and Frank Stenger, An extremal problem for polynomials with a prescribed zero, Proc. Amer. Math. Soc. 43 (1974), 84–90. MR 333123, DOI 10.1090/S0002-9939-1974-0333123-0
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 73 (1979), 375-378
- MSC: Primary 30A10; Secondary 26D05
- DOI: https://doi.org/10.1090/S0002-9939-1979-0518524-4
- MathSciNet review: 518524