A SIMPLER PROOF THAT COMPACT METRIC SPACES ARE SUPERCOMPACT

CHARLES F. MILLS

ABSTRACT. We give a simpler proof that every compact metric space is supercompact.

In 1969 De Groot [5] introduced the notion of supercompactness (see definition below). All supercompact spaces are compact by the Alexander subbase lemma; the converse of this was recently shown false by Bell [1].

This leaves the question of what hypotheses on a space, beyond compactness, enable one to conclude that it is supercompact. Strok and Szymański [7] have shown, in particular, that all compact metric spaces are supercompact; their proof, however, is very complicated.

The purpose of this note is to offer a simpler proof. We have been advised that our proof is similar to one of van Douwen [4], though ours is somewhat simpler.

The author has recently shown [6] that all compact groups are supercompact.

A collection \mathcal{L} is said to be linked if whenever $A, B \in \mathcal{L}$, $A \cap B \neq \emptyset$. \mathcal{B} is binary if for every linked $\mathcal{L} \subseteq \mathcal{B}$, $\bigcap \mathcal{L} \neq \emptyset$. A space X is said to be supercompact if X has a binary closed subbase.

Fix a compact metric space X and let $\{C_n : n \in \omega\}$ be a closed base for X. We shall construct a sequence $\{S_n : n \in \omega\}$ of finite families of closed sets such that for each $n \in \omega$,

1. $\bigcup_{m < n} S_m = C_n$,
2. $\bigcup_{m < n} S_m$ is binary.

By (1), $S = \bigcup_{n \in \omega} S_n$ is a subbase for X; since X is compact, (2) implies that S is binary.

We proceed by induction on n. Set

$$S = \bigcup_{m < n} S_m.$$

Observe that by induction hypothesis S is finite and binary. For $p \in C_n$, let

$$\# p = |\{F \in S : p \in F\}|$$

and let

$$A_k = \{x \in C_n : \# x \geq k\}.$$
Note that there is k_0 such that $A_{k_0} = \emptyset$.

We define by downward induction on k a finite set \mathcal{G}_k of closed subsets of X such that

1. $A_k \subset \bigcup \mathcal{G}_k \subset C_n$;
2. $\mathcal{G}_k \cup \mathcal{F}$ is binary;
3. $\bigcup \mathcal{G}_k$ is a neighborhood (relative to C_n) of A_k;
4. For every $\mathcal{A} \subset \mathcal{F}$, either $\bigcap \mathcal{A} \setminus \bigcup \mathcal{G}_k$ is infinite or $\bigcap \mathcal{A} \cap (C_n \setminus \bigcup \mathcal{G}_k)$ is finite.

By (1) and (2), we may take $\mathcal{F}_n = \mathcal{G}_0$, so it remains only to construct the \mathcal{G}_k's. Take $\mathcal{G}_{k_0} = \emptyset$. Fix $k < k_0$ and assume \mathcal{G}_{k+1} has been constructed. Set $C = C_n \setminus \bigcup \mathcal{G}_{k+1}$;

let \mathcal{K} be the set of all intersections with C of intersections of precisely k distinct members of \mathcal{F}. By (3), \mathcal{K} is a disjoint collection; also, \mathcal{K} is finite. For each $\mathcal{A} \subset \mathcal{F}$ such that $\bigcap \mathcal{A}$ has a limit point in $C \setminus \bigcup \mathcal{K}$, pick $x_\mathcal{A}$ to be such a limit. Since \mathcal{F} is finite and X is normal, there is a neighborhood N of $\bigcap \mathcal{K}$ such that $N \cap \{x_\mathcal{A} : \mathcal{A} \subset \mathcal{F} \& \bigcap \mathcal{A} \text{ has a limit in } C \setminus \bigcup \mathcal{K}\} = \emptyset$.

If \mathcal{G}_k is chosen so that $\bigcup \mathcal{K} \subset \bigcup \mathcal{G}_k \subset N$, (4) will be satisfied. Since $\mathcal{F} \cup \mathcal{G}_{k+1}$ is finite and X is normal, we may pick a finite disjoint cover \mathcal{Q} of $\bigcup \mathcal{K}$ consisting of:

1. For each infinite $H \in \mathcal{K}$, a neighborhood U_H of H such that $\overline{U_H}$ meets no members of $\mathcal{F} \cup \mathcal{G}_{k+1}$ that do not meet H.
2. For each finite $H \in \mathcal{K}$ and each $p \in H$, a neighborhood U_p of p such that U_p meets no members of $\mathcal{F} \cup \mathcal{G}_{k+1}$ that do not contain p.

Set $\mathcal{G}_k = \{U \cap N \cap C : U \in \mathcal{Q}\}$ if $G = \overline{U_H} \cap N \cap C$ (respectively $G = \overline{U_p} \cap N \cap C$). Set $G = G_H$ (respectively $G = G_p$).

If $\mathcal{L} \subset \mathcal{G}_k \cup \mathcal{G}_{k+1}$ and \mathcal{L} is linked, then since \mathcal{G}_k is disjoint, \mathcal{L} contains at most one member of \mathcal{G}_k of \mathcal{G}_0. If $G = G_H$ for some $H \in \mathcal{K}$, pick $p_\mathcal{L} \in H \setminus \bigcup \mathcal{G}_{k+1}$ in such a way that $p_\mathcal{L} = p_\mathcal{L}$ only if $\mathcal{L} = \mathcal{L}$; this is possible since (by (4)) $H \setminus \bigcup \mathcal{G}_{k+1}$ is infinite. For $G \in \mathcal{G}_{k+1}$ let $G' = G \cup \{p_\mathcal{L} : G \in \mathcal{L}\}$.

Observe that $G' \setminus G$ is finite, so G' is closed. Set $\mathcal{G}_k = \mathcal{G}_k \cup \{G' : G \in \mathcal{G}_{k+1}\}$. It is clear that (1), (3), and (4) hold of \mathcal{G}_k; it remains only to prove that $\mathcal{G}_k \cup \mathcal{F}$ is binary. Let $\mathcal{E} \subset \mathcal{G}_k \cup \mathcal{F}$ be linked.

Claim. $\mathcal{L}' = \{G \in \mathcal{G}_{k+1} : G' \in \mathcal{L}\}$ is linked. For assume that $G_0, G_1 \in \mathcal{L}'$. Since $G_0 \cap G_1 \neq \emptyset$, either $G_0 \cap G_1 \neq \emptyset$ or there is $p_\mathcal{L} \in G_0 \cap G_1$. But this implies that $G_0, G_1 \in \mathcal{L}''$; since \mathcal{L}'' is linked, $G_0 \cap G_1 \neq \emptyset$.

There are three cases to consider.

Case 1. $\mathcal{L} = \{F_0, \ldots, F_n\} \cup \{G_0, \ldots, G_m\}$ for some $F_0, \ldots, F_n \in \mathcal{F}$.
Then $\cap \mathcal{L} \supseteq F_0 \cap \cdots \cap F_n \cap \mathcal{L}'$ which is nonempty by induction hypothesis.

Case 2. $\mathcal{L} = \{G_0\} \cup \{F_0, \ldots, F_n\} \cup \{G_0, \ldots, G_m\}$.
Then by construction (of G_p), $p \in \cap \mathcal{L}$.

Case 3. $\mathcal{L} = \{G_H\} \cup \{F_0, \ldots, F_n\} \cup \{G_0, \ldots, G_m\}$.
By choice of G_H, each F_i contains H; in particular, $p_{e_F} \in F_0 \cap \cdots \cap F_n$. Then $p_{e_F} \in \cap F_i$. \[\square\]

REFERENCES

1. M. G. Bell, Not all compact Hausdorff spaces are supercompact, General Topology and Appl. 8 (1978), 151–155.
6. C. F. Mills, Compact groups are supercompact (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706