A simpler proof that compact metric spaces are supercompact
HTML articles powered by AMS MathViewer
- by Charles F. Mills
- Proc. Amer. Math. Soc. 73 (1979), 388-390
- DOI: https://doi.org/10.1090/S0002-9939-1979-0518526-8
- PDF | Request permission
Abstract:
We give a simpler proof that every compact metric space is supercompact.References
- Murray G. Bell, Not all compact Hausdorff spaces are supercompact, General Topology and Appl. 8 (1978), no. 2, 151–155. MR 474199
- Murray G. Bell and Jan van Mill, The compactness number of a compact topological space. I, Fund. Math. 106 (1980), no. 3, 163–173. MR 584490, DOI 10.4064/fm-106-3-163-173
- Jan van Mill, In memoriam: Eric Karel van Douwen (1946–1987), Topology Appl. 31 (1989), no. 1, 1–18. MR 984100, DOI 10.1016/0166-8641(89)90094-1 E. K. van Douwen, Special bases for compact metric spaces, Fund. Math. (to appear).
- J. Flachsmeyer, H. Poppe, and F. Terpe (eds.), Contributions to extension theory of topological structures, VEB Deutscher Verlag der Wissenschaften, Berlin, 1969. MR 0244955 C. F. Mills, Compact groups are supercompact (to appear).
- M. Strok and A. Szymanski, Compact metric spaces have binary bases, Fund. Math. 89 (1975), no. 1, 81–91. MR 383351, DOI 10.4064/fm-89-1-81-91
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 73 (1979), 388-390
- MSC: Primary 54E45
- DOI: https://doi.org/10.1090/S0002-9939-1979-0518526-8
- MathSciNet review: 518526