A characterization of prime Noetherian P. I. rings and a theorem of Mori-Nagata
HTML articles powered by AMS MathViewer
- by Amiram Braun
- Proc. Amer. Math. Soc. 74 (1979), 9-15
- DOI: https://doi.org/10.1090/S0002-9939-1979-0521864-6
- PDF | Request permission
Abstract:
Let R be a noetherian prime p.i. ring, C the center of R and $\bar C$ its normalization. It is proved that R is integral over its center iff $\bar C$ is a Krull domain. We also give a simple proof for the following theorem [7]: The normalization of a commutative noetherian domain is Krull.References
- David Eisenbud, Subrings of Artinian and Noetherian rings, Math. Ann. 185 (1970), 247–249. MR 262275, DOI 10.1007/BF01350264
- Edward Formanek, Noetherian $\textrm {PI}$-rings, Comm. Algebra 1 (1974), 79–86. MR 357489, DOI 10.1080/00927877408548610
- Arun Vinayak Jategaonkar, Principal ideal theorem for Noetherian P.I. rings, J. Algebra 35 (1975), 17–22. MR 371944, DOI 10.1016/0021-8693(75)90032-0
- William Heinzer, Jack Ohm, and R. L. Pendleton, On integral domains of the form $\cap D_{P}, P$ minimal, J. Reine Angew. Math. 241 (1970), 147–159. MR 263793
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Jacob R. Matijevic, Maximal ideal transforms of Noetherian rings, Proc. Amer. Math. Soc. 54 (1976), 49–52. MR 387269, DOI 10.1090/S0002-9939-1976-0387269-3
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Jun-ichi Nishimura, Note on integral closures of a Noetherian integral domain, J. Math. Kyoto Univ. 16 (1976), no. 1, 117–122. MR 409433, DOI 10.1215/kjm/1250522963
- Claudio Procesi, Rings with polynomial identities, Pure and Applied Mathematics, vol. 17, Marcel Dekker, Inc., New York, 1973. MR 0366968
- William Schelter, On the Krull-Akizuki theorem, J. London Math. Soc. (2) 13 (1976), no. 2, 263–264. MR 404329, DOI 10.1112/jlms/s2-13.2.263
- William Schelter, Integral extensions of rings satisfying a polynomial identity, J. Algebra 40 (1976), no. 1, 245–257. MR 417238, DOI 10.1016/0021-8693(76)90095-8
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 74 (1979), 9-15
- MSC: Primary 16A38
- DOI: https://doi.org/10.1090/S0002-9939-1979-0521864-6
- MathSciNet review: 521864