ON \(^*-\)PRIMITIVE RINGS

THOMAS P. KEZLAN

Abstract. Ortiz has defined a new radical for rings, called the \(\mathcal{K}\)-radical, which in general lies strictly between the prime radical and the Jacobson radical. In this paper a simple internal characterization of \(\mathcal{K}\)-primitive rings is given, and it is shown that among the \(\mathcal{K}\)-primitive rings are prime Noetherian rings and prime rings which satisfy a polynomial identity. In addition an analogue of the density theorem is proved for \(\mathcal{K}\)-primitive rings.

Throughout, \(R\) will denote an associative ring, not necessarily with unity element. If \(N\) is a submodule of a right \(R\)-module \(M\), then \((N : M) = \{ a \in R | Ma \subset N \}\). As in [1], let \(K_R\) denote the class of all right \(R\)-modules \(M\) such that

1. \((0 : M)\) is a prime ideal of \(R\);
2. if \(TV\) is a submodule of \(M\) for which \((TV : M) = (0 : M)\), then \(TV = 0\).

Ortiz has shown that the property \(K_R = \emptyset\) is a radical property and that the \(\mathcal{K}\)-radical is \(\bigcap \{(0 : M) | M \in K_R\}\). A right \(\mathcal{K}\)-primitive ideal of \(R\) is an ideal \(P\) such that \(P = (0 : M)\) for some \(M \in K_R\), and a right \(\mathcal{K}\)-primitive ring is a ring in which \(0\) is a right \(\mathcal{K}\)-primitive ideal. Thus \(R\) is right \(\mathcal{K}\)-primitive if and only if \(R\) is a prime ring and \(K_R\) contains a faithful right \(R\)-module. Left \(\mathcal{K}\)-primitive, etc., are defined analogously, and in this paper terms such as \("\mathcal{K}\)-primitive"\) will always mean \("right \mathcal{K}\)-primitive"\).

Proposition 1. A prime ring \(R\) is \(\mathcal{K}\)-primitive if and only if \(R\) contains a right ideal \(I\) which is maximal with respect to the property \((I : R) = 0\).

Proof. Suppose \(R\) is \(\mathcal{K}\)-primitive and let \(M\) be a faithful right \(R\)-module in \(K_R\). Choose \(m \neq 0\) in \(M\); let \(I = \{ x \in R | mx = 0 \}\); and suppose \(a \in (I : R)\). If \(N = \{ n \in M | nRa = 0 \}\), then since \(m \in N\), \(N\) is a nonzero submodule of \(M\), whence there exists \(b \neq 0\) in \((N : M)\). Thus \(Mb \subset N\) and so \(MbRa = 0\), which yields \(bRa = 0\) and hence \(a = 0\) since \(R\) is prime. Therefore \(R\) is a right ideal of \(R\) satisfying \((I : R) = 0\). Now let \(J\) be any right ideal of \(R\) properly containing \(I\). Since \(mJ\) is a nonzero submodule of \(M\), there is an \(x \neq 0\) in \((mJ : M)\). Let \(r \in R\). Since \(mRx \subset Mx \subset mJ\), there exists \(y \in J\)
such that \(mrx = my \). Thus \(rx - y \in I \) and so \(rx = (rx - y) + y \in J \). Hence \(Rx \subseteq J \), and so \(I \) is maximal with respect to \((I : R) = 0 \).

Conversely, assume \(I \) is a right ideal of \(R \) which is maximal with respect to \((I : R) = 0 \), and let \(M \) be the right \(R \)-module \(R/I \). Since \((0 : M) = (I : R) = 0 \), \(M \) is faithful. If \(N \) is a nonzero submodule of \(M \), then its inverse image \(J \) in \(R \) is a right ideal properly containing \(I \), and by the maximality of \(I \), \((J : R) \neq 0 \). Since \((N : M) = (J : R) \), we have \(M \subseteq K_R \), and so \(R \) is \(K \)-primitive.

Corollary 1. Every primitive ring is \(K \)-primitive.

Corollary 2. Every right Noetherian prime ring is \(K \)-primitive.

Theorem 1. If \(R \) is a right order in a simple Artinian ring \(Q \) with center \(F \) such that \(Q = RF \), then \(R \) is \(K \)-primitive.

Proof. \(Q \cong D_n \) for some division ring \(D \). Let \(V \) be an \(n \)-dimensional right vector space over \(D \); choose \(v \neq 0 \) in \(V \); and let \(I = \{ x \in R | vx = 0 \} \). If \(a \in (I : R) \), then

\[
Va = vQa = vRFa = vRaF \subseteq vIF = 0,
\]

whence \(a = 0 \). Thus \(I \) is a right ideal of \(R \) satisfying \((I : R) = 0 \). Let \(J \) be a right ideal of \(R \) properly containing \(I \). Since \(vJ \) is a nonzero \(R \)-submodule of \(V \), \(vJF \) is a nonzero \(Q \)-submodule of \(V \) and hence \(V = vJF \). Choose \(x \in JF \) such that \(v = vx \). There exist \(a \) and \(b \) in \(R \) with \(b \) regular such that \(1 - x = ab^{-1} \). Hence \(vab^{-1} = v(1 - x) = 0 \), and so \(va = 0 \), which means that \(a \in I \). Thus \(b = a + xb \in I + JF \subset JF \). Since \(JF \) is a right ideal of \(Q \) and contains an invertible element \(b \) of \(Q \), we have \(JF = Q \). We now write \(1 = \sum c_\lambda \lambda \) where the \(c_\lambda \) are in \(J \) and the \(\lambda \) are in \(F \). We may also write \(\lambda = d_\lambda e^{-1} \) where the \(d_\lambda \) are in \(R \) and \(e \) is a regular element of \(R \). For any \(r \in R \) we have

\[
r = 1 \cdot r = \sum c_\lambda \lambda r = \sum c_\lambda r \lambda = \sum c_\lambda rd_\lambda e^{-1},
\]

whence \(re = \sum c_\lambda rd_\lambda \in J \). Thus \(Re \subseteq J \) and so \((J : R) \neq 0 \). Therefore \(I \) is maximal with respect to \((I : R) = 0 \), so by Proposition 1, \(R \) is \(K \)-primitive. \(\square \)

Using Theorem 1 and Posner's Theorem [2], we establish

Corollary 3. Every prime ring satisfying a polynomial identity over its centroid is both left and right \(K \)-primitive.

A special case of Theorem 1 is worth noting. If \(Q \) is a division ring—that is, if \(R \) is a right Ore domain—then the proof of Theorem 1 shows that the right ideal \(I \) is 0. We shall call a \(K \)-primitive ring strongly \(K \)-primitive in case the right ideal \(I \) which is maximal with respect to \((I : R) = 0 \) is \(I = 0 \). Thus we have

Corollary 4. If \(R \) is a right Ore domain with right quotient ring \(D \) having center \(F \) such that \(D = RF \), then \(R \) is strongly \(K \)-primitive.
Several obvious questions arise concerning K-primitive rings:

1. Are left and right K-primitivity equivalent?

2. Converse of Corollary 4. Is every strongly K-primitive ring a right Ore domain which, together with the center of its right quotient ring D, generates D?

3. Is every right Ore domain K-primitive? Strongly K-primitive?

4. Can the hypothesis $Q = RF$ in Theorem 1 be removed? Equivalently, is every prime right Goldie ring K-primitive?

These questions are open except for the second part of 3: Any simple right Noetherian domain, not a division ring, is a right Ore domain but is not strongly K-primitive; it is K-primitive however, by Corollary 2. Also, question 2 can be answered partially by

Proposition 2. Every strongly K-primitive ring is a right Ore domain.

Proof. Let a and b be nonzero elements of the strongly K-primitive ring R. By maximality of the zero right ideal, every nonzero right ideal I of R satisfies $(I : R) \neq 0$. In particular $(bR : R) \neq 0$, so there exists $b_1 \neq 0$ in R such that $Rb_1 \subset bR$. If $ab = 0$, then $aRb_1 \subset abR = 0$, a contradiction since R is prime; thus R has no zero divisors. Moreover, since $ab_1 \in Rb_1 \subset bR$, there exists $a_1 \neq 0$ in R such that $ab_1 = ba_1$, so R is a right Ore domain. □

In [1] Ortiz showed that every K-primitive ring can be embedded in a full ring of linear transformations of a vector space over a division ring. We shall investigate this embedding and in fact prove an analogue of Jacobson's density theorem for K-primitive rings. One formulation of density is the following: If V is a vector space over a division ring D, then a subring R of $\text{Hom}_D(V, V)$ is dense if and only if V is irreducible and for every finite-dimensional subspace W and every vector $u \in W$, $(u(0 : W) : V) = R$. A slight variation of this definition leads to the desired characterization of K-primitive rings. We first define V to be K-irreducible if and only if $vRa = 0$ with $v \in V$ and $a \in R$ implies $v = 0$ or $a = 0$. A subring R of $\text{Hom}_D(V, V)$ will be called K-dense if and only if V is K-irreducible and for every finite-dimensional subspace W and every vector $u \in W$, $(u(0 : W) : V) \neq 0$.

Theorem 2. If R is a K-primitive ring, V is a faithful module in K_R, and \bar{V} is the quasi-injective hull of V, then $D = \text{Hom}_R(\bar{V}, V)$ is a division ring, V is a vector space over D, and R is a K-dense subring of $\text{Hom}_D(V, V)$. Conversely, if a ring R is a K-dense subring of $\text{Hom}_D(V, V)$ for some vector space V over a division ring D, then R is K-primitive, $V \in K_R$, and $D = \text{Hom}_R(\bar{V}, V)$.

Proof. Assume first that R is a K-primitive ring with V a faithful module in K_R. Ortiz [1] has shown that D is a division ring, that V is a vector space over D, and that the mapping $a \to a'$ defined by $va' = va$ for $v \in V$ and $a \in R$ is an embedding of R in $\text{Hom}_D(V, V)$. We must show that R is K-dense. Let $a \neq 0$ be in R and let $N = \{v \in V | vRa = 0\}$. N is a submodule
of V and if $N \neq 0$, then $(N : V) \neq 0$, whence there exists $b \neq 0$ in R such that $VbRa \subset NRa = 0$. This implies that $bRa = 0$, a contradiction since R is prime. Thus $N = 0$, that is, V is K-irreducible. If we show that for every finite-dimensional subspace W and every vector $u \notin W$, we have $u(0 : W) \neq 0$, then $u(0 : W)$, being a nonzero submodule of V, would satisfy $(u(0 : W) : V) \neq 0$, thereby proving that R is K-dense. Suppose then that W is a finite-dimensional subspace of smallest dimension for which there is a vector $u \notin W$ such that $u(0 : W) = 0$. If $W = 0$, then $u(0 : W) = uR \neq 0$, so $\dim W > 0$. Let $W = W_0 + wD$ where

$$\dim W_0 = \dim W - 1$$

and $w \notin W_0$. The mapping $T: w(0 : W_0) \to u(0 : W_0)$ defined by $(wa)T = ua$ for $a \in (0 : W)$ is well-defined since $wa_1 = wa_2$ with a_1, a_2 in $(0 : W_0)$ implies

$$a_1 - a_2 \in (0 : W_0) \cap (0 : w) = (0 : W)$$

and hence $u(a_1 - a_2) = 0$. Since \overline{V} is quasi-injective, T can be extended to $\lambda \in \text{Hom}_R(V, \overline{V}) = D$. For any $a \in (0 : W_0)$ we have

$$ua = (wa)T = (wa)\lambda = (w\lambda)a$$

and so $(u - w\lambda)(0 : W_0) = 0$. By minimality of W we must have $u - w\lambda \in W_0$ and hence $u \in W_0 + wD = W$, a contradiction. This proves that R is K-dense.

Conversely, assume that R is a K-dense subring of $\text{Hom}_D(V, V)$ for some vector space V over a division ring D. Suppose A and B are left ideals of R such that $AB = 0$. Choose $a \neq 0$ in A and $v \neq 0$ in V. For any $b \in B$ we have $vRaRb \subset vAB = 0$. The K-irreducibility of V implies that $vRa \neq 0$, so choosing $r \in R$ such that $vra \neq 0$, we have $vraRb = 0$ and by K-irreducibility again we have $b = 0$. Thus R is a prime ring. Suppose N is a nonzero R-submodule of V and choose $u \neq 0$ in N. Taking $W = 0$ we have

$$0 \neq (u(0 : W) : V) = (uR : V) \subset (N : V)$$

and hence $V \in K_R$ and R is K-primitive. To show that $D = \text{Hom}_R(\overline{V}, \overline{V})$, let $\lambda \in D$. The mapping $v \to v\lambda$ can be extended to $\lambda' \in \text{Hom}_R(\overline{V}, \overline{V})$. We shall show that λ' is unique and that identifying λ with λ' yields the desired conclusion. Suppose λ' and λ'' are both extensions of $v \to v\lambda$. Then $\lambda' - \lambda''$ is in $\text{Hom}_R(\overline{V}, \overline{V})$ and since the latter is a division ring, either $\lambda' - \lambda''$ is one-to-one or $\lambda' - \lambda''$ is 0. Since

$$\ker(\lambda' - \lambda'') \supset V \neq 0,$$

we have $\lambda' = \lambda''$. Thus the identification of λ with λ' is well defined and embeds D in $\text{Hom}_R(\overline{V}, \overline{V})$. To complete the proof we must show that every element of $\text{Hom}_R(\overline{V}, \overline{V})$ is λ' for some $\lambda \in D$. Suppose $f \neq 0$ is in $\text{Hom}_R(\overline{V}, \overline{V})$; since f is one-to-one, $0 \neq Vf \subset V$. Thus there exist u, w in V such that $u = wf \neq 0$. Suppose u and w are linearly independent over D.
Then \((u(0 : w) : V) \neq 0\) so there exists \(a \neq 0\) in \(R\) such that

\[Va \subset u(0 : w) = (wf)(0 : w) = w(0 : w)f = 0,\]

a contradiction. Hence \(u\) and \(w\) are linearly dependent, say \(u = w\lambda\) for some \(\lambda \in D\). Then \(w(\lambda' - f) = 0\) and hence \(\lambda' - f\), not being one-to-one, must be 0.

References

Department of Mathematics, University of Missouri-Kansas City, Kansas City, Missouri 64110