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INTERSECTIONS OF COMMUTANTS WITH CLOSURES OF

DERIVATION RANGES

DOMINGO A. HERRERO

Abstract. The norm closure of the set ^(90) = U {Ran(5/I)""' n {A)':

A 6 £(9t)}, where 6^ denotes the inner derivation induced by the operator

A, Ràn(8A)~w is the weak closure of the range of SA and [A)' is the

commutant of A, is disjoint from the open dense subset ®(9C) = {T E

£(9C): rhas a nonzero normal eigenvalue} for every complex Banach space

9C. For a Hubert space DC, £(30 = «(DC) u ¿(DC)", where the bar
denotes norm closure.

1. Introduction. Let % be a (nonzero) complex Banach space and let £(9C)

denote the algebra of all (bounded linear) operators acting on 9C. To each

& E £(9t) we associate the following objects: 8A (the inner derivation of

£(%) defined by 8A (X) = AX - XA), Ran^)- (the norm closure of the

range of 5^), Ra.n(8Ayw (the closure of the range of 8A in the weak operator

topology), {A}' (the commutant of A), a (A) (the spectrum of A) and sp(A)

(the spectral radius of A).

In [15] Hong W. Kim analyzed the set

& = (J (Rani^)" n{A}':A 6 £(%)}

for the case when % = % is a Hubert space and raised the following

problems:

[15, Question 1]. Is t(%)\& (norm) dense in £(%)?

[15, Question 3]. Is every thin operator in ÉE?

(where B E £(9C) is thin, in the sense of A. Brown and C. Pearcy [4], if

B = A — K for some A £ C = complex plane, identified with the multiples

of the identity operator, and some K £ % = the ideal of compact operators).

The subset of all thin operators will be denoted by (7").

The answer to the first question is yes. Indeed, more is actually true:

&„ = U {R&n(8Ayw n {A}': A E £(9C)} is nowhere dense in £(%) for

every complex Banach space 9C.

The answer to the third question is no: If A — K E <£~, then o(A - K) c

(0, A} (for every 9C as well).
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Recall that a point À G a(T) is a normal eigenvalue of T if X is isolated in

o(F) and 9C = %^ © 9^', where %^, %^ are the spectral invariant subspaces

of F such that a(Tx) = {X} (Tx » T\% is the restriction of F to 9GJ and

X G a(F|%(), and 90^ is finite dimensional. Then we have

Theorem 1. &~ is disjoint from the open dense set <$ = {T G £(9C):

ao(F) n [C\ {0}] ¥=0), where a0(T) denotes the set of all normal eigenvalues

ofT.
In particular, if B = X - A G fij C\ (T), then either A is a compact

quasinilpotent operator or o(K) = {0, X}. &~ n (T) is nowhere dense in (T).

Proof. That 9> is open and dense and, similarly, that % n (F) is open

and dense in (T) follows from [13]. Thus, in order to complete the proof, it

suffices to show that &w n 9> =0, and this follows from [16, Theorem 3].

(Indeed, the assumption that DC is a Hilbert space is irrelevant in [16]: no

modifications are necessary for the case of an arbitrary Banach space %.)

D
For a Hilbert space %, Theorem 1 gives the best possible answer. Recall

that the weak* (or ultraweak) topology of £(9C) (i.e., the weak* topology as

the dual of the Banach space of all trace class operators; see [5, p. 39]) is

strictly stronger than the weak operator topology. Hence,

&w. = (J {Ran(5/4)"w* n {A}': A G £(%)}

is a subset of &w and therefore, by Theorem 1,

(&w.yc&- Gt(%)\%.

These inclusions are actually equalities; in fact, we have

Theorem 2. For an infinite dimensional Hilbert space %, ft(%) is the

disjoint union of % and (&w.)~, i.e., (&w.y = &~ = e(3C)\'S.

The proof of this theorem will be given in §3. The author wishes to thank

Professor L. A. Fialkow for providing useful references.

2. Complementary results.

Lemma 1. (i) &(C") = &(Cny = {Q G £(C): Q is nilpotent}, n = 1, 2,

3, . . . .
(ii) For every 6X, <S contains every finite rank nilpotent operator.

Proof. Let Qk, Hk G £((?) be the operators defined by Qkex = 0, Qke} =

Cj_x,j = 2,3,...,k, and Hkej = jepj = I, 2, 3, . . . , k, where {*)})_, is the

canonical basis of C*. Then (as in [6, Chapter 19])

QkHk - HkQk = QkG Ran(5a ) n {Qk )'.

By considering finite direct sums and Jordan forms, we obtain (i); (ii) is a

trivial consequence of (i) and the Hahn-Banach theorem.   □
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Lemma 2. Let T E £(9C) and assume that there exists an idempotent P such

that PA = AP for all A E {T}'. Then T E &(%) if and only if F|Ran P E

& (Ran P) and T|Ker P £ <£(Ker P).

In particular, if a(T) is disconnected, then T £ &(%) if and only if T\%a £

&(%a)for every spectral invariant subspace %a (associated with a clopen subset

a of a(T) via Riesz decomposition theorem).

The proof of the first part is straightforward. For the second part it is

enough to recall that, if Pa is the projection of 9C onto %„ along its

complementary spectral invariant subspace, then Pa commutes with every

A E {T}', so that {T}' "splits", etc. (see, e.g., [14, §5]).

The following result is a minor improvement of the Theorem in [15].

Lemma 3. If T is bounded below by a positive constant a and

*(¿, «)*(./«) 2 (K-'-'l-MVM""1!) < c(A),
(=0

where C(A) is a constant depending on A, for every A £ {T}' such that

a (A) C D(2, 1) = {A: |A - 2| < 1}, then T £ 6?.

Proof. Assume that T e & ; then

\im(j^<x>)\\oA(Xj)-T¡->0

for some A E {T)' and a suitable sequence {Xj)JisX c £(9C).

Replacing, if necessary, A by 2 + cA for some c > 0 small enough, we can

directly assume that a(A) c D(2, 1) [6, Chapter 19]; then a trivial change of

the proof of Theorem in [15] (see also [6, Problem 185]) shows that

a <(\/n)[2\\A\\-\\XJ\\ + \\8A(Xj) - T\\n4>(A,n)}

<(2MWII)/" + C(A)\\8A{Xj) - T\\
for all ai,y > 1 and, a fortiori,

0 < a < C04)||M*,) - 7lh°    C/-»oo),

a contradiction,   fj

Remark. If ^ E £(C*) and o(y4) c 7)(2, 1), then A = WJW~X for some

invertible W and some Jordan form J whose eigenvalues lie outside the closed

unit disk D ~ = {A: |A| < 1}; we obtain

sp(^4)'< ||^4'|| < sp(A)' +k\\W\\-\\W-{\\sv(A) < sp(/l)''(l + *||»F||-||»'"'1||),

whence it readily follows that <b(A, ri) = C(A) = (1 + k\\ W\\ ■ \\ W~x\\f.

3. The Hubert space case.

Proof of Theorem 2. Assume that T £ *$> ; then T is similar to T0 © Tx,

where T0 is a nilpotent operator acting on a subspace DCq of finite dimension

d, 0 < d < oo, and T, acts on an infinite dimensional subspace %x and

a0(r,) =0.
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Assume that % is separable; then it follows from the proof of [9, Theorem

3] that F, is the norm limit of a sequence {An}™=1 in t(%x) such that

{A„}' = {A„}" ( = double commutant) does not contain any nonzero

compact operator.

According to [19, Corollary 1] Ran(5^)_w* = £(%) if and only if {A}' does

not contain any nonzero trace class operator. Hence, A„ G {A„}' c

Rm(8A)~w' = £(%,) for all n = 1, 2, .. ., and, a fortiori, F, G &„.(%)'.

By using Lemma l(i) and the fact that & (and therefore S," too [11, §2]) is

invariant under similarities, we conclude that F belongs to &w.(%)~.

In the nonseparable case, F, = © „erF,„ (F, is unitarily equivalent to the

orthogonal direct sum of the family {TXr}yer), where card(T) = dim % and

ao(TXp) = 0 for all v G T (see, e.g., [10, Theorem 3]).

Combining this decomposition with the proof of [9, Theorem 3] we can find

a sequence {A„ = ©„6r^ira}?=i (tne decomposition of 3C, being the same

as for F,, of course) of operators in £(%x) such that AXm is similar to an

operator in a finite family {Bx, B2, . . . , Br(ri)), {Bj}' = {£,•}" does not

contain any nonzero compact operator and {A„}' n %(%i) = {0} for every

n = 1, 2, 3, . . . . Exactly as in the separable case, we conclude that F G

&„.(%)-. d
We close the paper with some remarks and open problems.

(a) If % is a complex separable infinite dimensional Hilbert space and A is

unitarily equivalent to the orthogonal direct sum of the compact operators

{0 A)öt}S°=i (K Ä ©a°=iO A)ö*)> where Qk is the operator defined in the

proof of Lemma l(ii), then K G % and the arguments used in that lemma

show that A G Ran^)" n {A}'; furthermore, if L s ®k=x(\/k\)2Qk, then

L G 8K(%) n {A}'. Thus, &% = U {Ran^r n {A}': K G %} contains

a quasinilpotent operator which is not nilpotent (similar examples can be

obtained for an arbitrary infinite dimensional Banach space % by using

Markushevich bases [17]).

Combining Lemma l(ii) with a result of R. G. Douglas (every compact

quasinilpotent is a norm limit of finite rank nilpotents [7, Problem 7]), it

readily follows that 8T n % = &~ n % = &%~ = {A G %: K is a quasi-

nilpotent).

Question 1. Is & n DC a proper subset of & %' ? Is & % a proper subset of

Question 2. Does 1 - A G & for some nonzero compact quasinilpotent

A?
(b) By a celebrated theorem of J. H. Anderson [1], it readily follows that if

N = (Nilpotent acting on a finite dimensional space) ©{©\<eaA\}> where A

is an arbitrary bounded subset of C and Ix is the identity operator on a

Hilbert space SC^ of infinite dimension, then N G &. On the other hand, if

L= f     XdEx
•Mr)
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is the spectral decomposition of the normal operator L and there exists a

Borel set fi c C\{0} such that F(fl) ^ 0 and La = L\E(ti)% has uniform

finite multiplicity (the reader is referred to [8] for definitions and properties),

then L £ &. (Proof. C(Aa) = [multiplicity of Ln] for all Aa £ {La}'. Now

apply Lemmas 2 and 3.) In particular, if U is the bilateral shift, then

U(n) =U+U+---+U(n copies) belongs to &~\(£, » - 1,2,_

Question 3. Which normal operators belong to éE? Does U(a0) = U © t/

©£/©... belong to M?

(c) If DC is separable, then F E £(9C) is biquasitriangular if ind(A — F) = 0

for all A E C such that A — F is a semi-Fredholm operator [2]; for a

nonseparable DC, biquasitriangularity is defined in terms of the weighted

spectra of F (see [10]). Let (BQT) denote the class of all biquasitriangular

operators acting in %.

The above mentioned consequence of Anderson's theorem and the fact

that &~ is invariant under similarities imply that S (TV)- c &~, where

§(#)={ WNW~U. W is invertible in £(%)}, for every N as in (b), whence

we obtain the following

Corollary 1. (BQT)\% c &~. In particular, (F)\<S c &~.

Proof. It follows from [3] and [10] (see also [12], [18]) that (BQT)\® =

[U{S(yV)~: N as in b)}]~ (the outer closure is irrelevant in the separable

case). Hence, (BQT)\ <S c &".   D

Conjecture. Sr = (BQT) \ "35.
(d) Is £(DC) = U {RaniSJ": A E £(%)} [15]? Observe that if P0 is a rank

one orthogonal projection, the proof of Lemma 3 shows that 7 + P0 is

orthogonal to Ran(§4) for all ,4 E {F0}' in the sense that

dist{7 + P0, Ran(8A )} = ||7 + F0|| = 2.

Question 4. Does 7 + F0 E Ran(S<)~ for some A E £(%)"!
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