INTERSECTIONS OF COMMUTANTS WITH CLOSURES OF DERIVATION RANGES

DOMINGO A. HERRERO

ABSTRACT. The norm closure of the set $\mathfrak{C}_w(\mathfrak{X}) = \bigcup \{\operatorname{Ran}(\delta_A)^{-w} \cap \{A\}': A \in \mathfrak{L}(\mathfrak{X})\}$, where δ_A denotes the inner derivation induced by the operator A, $\operatorname{Ran}(\delta_A)^{-w}$ is the weak closure of the range of δ_A and $\{A\}'$ is the commutant of A, is disjoint from the open dense subset $\mathfrak{B}(\mathfrak{X}) = \{T \in \mathfrak{L}(\mathfrak{X}): T \text{ has a nonzero normal eigenvalue}\}$ for every complex Banach space \mathfrak{X} . For a Hilbert space \mathfrak{X} , $\mathfrak{L}(\mathfrak{X}) = \mathfrak{B}(\mathfrak{X}) \cup \mathfrak{C}_w(\mathfrak{X})^-$, where the bar denotes norm closure.

1. Introduction. Let \mathfrak{X} be a (nonzero) complex Banach space and let $\mathfrak{L}(\mathfrak{X})$ denote the algebra of all (bounded linear) operators acting on \mathfrak{X} . To each $\mathfrak{C} \in \mathfrak{L}(\mathfrak{X})$ we associate the following objects: δ_A (the inner derivation of $\mathfrak{L}(\mathfrak{X})$ defined by $\delta_A(X) = AX - XA$), $\operatorname{Ran}(\delta_A)^-$ (the norm closure of the range of δ_A), $\operatorname{Ran}(\delta_A)^{-w}$ (the closure of the range of δ_A in the weak operator topology), $\{A\}'$ (the commutant of A), $\sigma(A)$ (the spectrum of A) and $\operatorname{sp}(A)$ (the spectral radius of A).

In [15] Hong W. Kim analyzed the set

$$\mathcal{C} = \bigcup \left\{ \operatorname{Ran}(\delta_A)^- \cap \{A\}' : A \in \mathcal{C}(\mathfrak{X}) \right\}$$

for the case when $\mathfrak{X}=\mathfrak{K}$ is a Hilbert space and raised the following problems:

[15, Question 1]. Is $\mathcal{L}(\mathfrak{K}) \setminus \mathcal{C}$ (norm) dense in $\mathcal{L}(\mathfrak{K})$?

[15, Question 3]. Is every thin operator in \mathcal{C} ?

(where $B \in \mathcal{C}(\mathfrak{X})$ is *thin*, in the sense of A. Brown and C. Pearcy [4], if $B = \lambda - K$ for some $\lambda \in \mathbb{C} = \text{complex plane}$, identified with the multiples of the identity operator, and some $K \in \mathcal{K} = \text{the ideal of compact operators}$). The subset of all thin operators will be denoted by (T).

The answer to the first question is yes. Indeed, more is actually true: $\mathcal{C}_w = \bigcup \{ \text{Ran}(\delta_A)^{-w} \cap \{A\}' : A \in \mathcal{C}(\mathfrak{X}) \}$ is nowhere dense in $\mathcal{C}(\mathfrak{X})$ for every complex Banach space \mathfrak{X} .

The answer to the third question is no: If $\lambda - K \in \mathcal{C}_{w}^{-}$, then $\sigma(\lambda - K) \subset \{0, \lambda\}$ (for every \mathfrak{X} as well).

Received by the editors May 9, 1978.

AMS (MOS) subject classifications (1970). Primary 16A72, 47B47.

Key words and phrases. Inner derivations, norm closure, weak closure, weak* closure, closure of the range of an inner derivation, commutant, normal eigenvalue, biquasitriangular operators.

Recall that a point $\lambda \in \sigma(T)$ is a normal eigenvalue of T if λ is isolated in $\sigma(T)$ and $\mathfrak{X} = \mathfrak{X}_{\lambda} \oplus \mathfrak{X}'_{\lambda}$, where \mathfrak{X}_{λ} , \mathfrak{X}'_{λ} are the spectral invariant subspaces of T such that $\sigma(T_{\lambda}) = \{\lambda\}$ ($T_{\lambda} = T | \mathfrak{X}_{\lambda}$ is the restriction of T to \mathfrak{X}_{λ}) and $\lambda \notin \sigma(T | \mathfrak{X}'_{\lambda})$, and \mathfrak{X}_{λ} is finite dimensional. Then we have

THEOREM 1. \mathscr{C}_w^- is disjoint from the open dense set $\mathscr{B} = \{T \in \mathscr{L}(\mathfrak{X}): \sigma_0(T) \cap [\mathbb{C} \setminus \{0\}] \neq \emptyset\}$, where $\sigma_0(T)$ denotes the set of all normal eigenvalues of T.

In particular, if $B = \lambda - K \in \mathcal{C}_w^- \cap (T)$, then either K is a compact quasinilpotent operator or $\sigma(K) = \{0, \lambda\}$. $\mathcal{C}_w^- \cap (T)$ is nowhere dense in (T).

PROOF. That \mathfrak{B} is open and dense and, similarly, that $\mathfrak{B} \cap (T)$ is open and dense in (T) follows from [13]. Thus, in order to complete the proof, it suffices to show that $\mathfrak{C}_w \cap \mathfrak{B} = \emptyset$, and this follows from [16, Theorem 3]. (Indeed, the assumption that \mathfrak{K} is a Hilbert space is irrelevant in [16]: no modifications are necessary for the case of an arbitrary Banach space \mathfrak{K} .)

For a Hilbert space \mathfrak{K} , Theorem 1 gives the best possible answer. Recall that the weak* (or ultraweak) topology of $\mathfrak{L}(\mathfrak{K})$ (i.e., the weak* topology as the dual of the Banach space of all trace class operators; see [5, p. 39]) is strictly stronger than the weak operator topology. Hence,

$$\mathcal{C}_{w^*} = \bigcup \left\{ \operatorname{Ran}(\delta_A)^{-w^*} \cap \{A\}' : A \in \mathcal{C}(\mathcal{H}) \right\}$$

is a subset of \mathcal{C}_{w} and therefore, by Theorem 1,

$$(\mathcal{Q}_{w^*})^- \subset \mathcal{Q}_w^- \subset \mathcal{L}(\mathcal{H}) \setminus \mathcal{B}$$
.

These inclusions are actually equalities; in fact, we have

THEOREM 2. For an infinite dimensional Hilbert space \mathfrak{R} , $\mathfrak{L}(\mathfrak{R})$ is the disjoint union of \mathfrak{B} and $(\mathfrak{C}_{w^*})^-$, i.e., $(\mathfrak{C}_{w^*})^- = \mathfrak{C}_w^- = \mathfrak{L}(\mathfrak{R}) \setminus \mathfrak{B}$.

The proof of this theorem will be given in §3. The author wishes to thank Professor L. A. Fialkow for providing useful references.

2. Complementary results.

LEMMA 1. (i) $\mathcal{Q}(\mathbf{C}^n) = \mathcal{Q}(\mathbf{C}^n)^- = \{Q \in \mathcal{L}(\mathbf{C}^n): Q \text{ is nilpotent}\}, n = 1, 2, 3, \dots$

(ii) For every \mathfrak{A} , \mathfrak{A} contains every finite rank nilpotent operator.

PROOF. Let Q_k , $H_k \in \mathcal{C}(\mathbb{C}^k)$ be the operators defined by $Q_k e_1 = 0$, $Q_k e_j = e_{j-1}$, $j = 2, 3, \ldots, k$, and $H_k e_j = je_j$, $j = 1, 2, 3, \ldots, k$, where $\{e_j\}_{j=1}^k$ is the canonical basis of \mathbb{C}^k . Then (as in [6, Chapter 19])

$$Q_k H_k - H_k Q_k = Q_k \in \operatorname{Ran}(\delta_{Q_k}) \cap \{Q_k\}'.$$

By considering finite direct sums and Jordan forms, we obtain (i); (ii) is a trivial consequence of (i) and the Hahn-Banach theorem.

LEMMA 2. Let $T \in \mathcal{L}(\mathfrak{X})$ and assume that there exists an idempotent P such that PA = AP for all $A \in \{T\}'$. Then $T \in \mathcal{L}(\mathfrak{X})$ if and only if $T|\text{Ran }P \in \mathcal{L}(\text{Ran }P)$ and $T|\text{Ker }P \in \mathcal{L}(\text{Ker }P)$.

In particular, if $\sigma(T)$ is disconnected, then $T \in \mathfrak{A}(\mathfrak{X})$ if and only if $T | \mathfrak{X}_{\sigma} \in \mathfrak{A}(\mathfrak{X}_{\sigma})$ for every spectral invariant subspace \mathfrak{X}_{σ} (associated with a clopen subset σ of $\sigma(T)$ via Riesz decomposition theorem).

The proof of the first part is straightforward. For the second part it is enough to recall that, if P_{σ} is the projection of \mathfrak{X} onto \mathfrak{X}_{σ} along its complementary spectral invariant subspace, then P_{σ} commutes with every $A \in \{T\}'$, so that $\{T\}'$ "splits", etc. (see, e.g., [14, §5]).

The following result is a minor improvement of the Theorem in [15].

LEMMA 3. If T is bounded below by a positive constant α and

$$\phi(A, n) = (1/n) \sum_{i=0}^{n-1} (\|A^{n-i-1}\| \cdot \|A^i\| / \|A^{n-1}\|) \le C(A),$$

where C(A) is a constant depending on A, for every $A \in \{T\}'$ such that $\sigma(A) \subset D(2, 1) = \{\lambda : |\lambda - 2| < 1\}$, then $T \notin \mathcal{C}$.

PROOF. Assume that $T \in \mathcal{C}$; then

$$\lim(j\to\infty)\|\delta_A(X_i)-T\|=0$$

for some $A \in \{T\}'$ and a suitable sequence $\{X_i\}_{i=1}^{\infty} \subset \mathcal{L}(\mathfrak{K})$.

Replacing, if necessary, A by 2 + cA for some c > 0 small enough, we can directly assume that $\sigma(A) \subset D(2, 1)$ [6, Chapter 19]; then a trivial change of the proof of Theorem in [15] (see also [6, Problem 185]) shows that

$$\alpha \leq (1/n) \{ 2\|A\| \cdot \|X_j\| + \|\delta_A(X_j) - T\|n\phi(A, n) \}$$

$$\leq (2\|A\| \cdot \|X_j\|)/n + C(A)\|\delta_A(X_j) - T\|$$

for all $n, j \ge 1$ and, a fortiori,

$$0 < \alpha \leqslant C(A) \|\delta_A(X_i) - T\| \to 0 \quad (j \to \infty),$$

a contradiction.

REMARK. If $A \in \mathcal{C}(\mathbb{C}^k)$ and $\sigma(A) \subset D(2, 1)$, then $A = WJW^{-1}$ for some invertible W and some Jordan form J whose eigenvalues lie outside the closed unit disk $D^- = {\lambda: |\lambda| \leq 1}$; we obtain

$$\operatorname{sp}(A)^{i} \le \|A^{i}\| \le \operatorname{sp}(A)^{i} + k\|W\| \cdot \|W^{-1}\| \operatorname{sp}(A) \le \operatorname{sp}(A)^{i} (1 + k\|W\| \cdot \|W^{-1}\|),$$

whence it readily follows that $\phi(A, n) = C(A) = (1 + k\|W\| \cdot \|W^{-1}\|)^{2}.$

3. The Hilbert space case.

PROOF OF THEOREM 2. Assume that $T \notin \mathfrak{B}$; then T is similar to $T_0 \oplus T_1$, where T_0 is a nilpotent operator acting on a subspace \mathfrak{K}_0 of finite dimension d, $0 \le d < \infty$, and T_1 acts on an infinite dimensional subspace \mathfrak{K}_1 and $\sigma_0(T_1) = \emptyset$.

Assume that \mathcal{K} is *separable*; then it follows from the proof of [9, Theorem 3] that T_1 is the norm limit of a sequence $\{A_n\}_{n=1}^{\infty}$ in $\mathcal{L}(\mathcal{K}_1)$ such that $\{A_n\}' = \{A_n\}''$ (= double commutant) does not contain any nonzero compact operator.

According to [19, Corollary 1] $\operatorname{Ran}(\delta_A)^{-w^*} = \mathcal{L}(\mathcal{H})$ if and only if $\{A\}'$ does not contain any nonzero trace class operator. Hence, $A_n \in \{A_n\}' \subset \operatorname{Ran}(\delta_{A_n})^{-w^*} = \mathcal{L}(\mathcal{H}_1)$ for all $n = 1, 2, \ldots$, and, a fortiori, $T_1 \in \mathcal{C}_{w^*}(\mathcal{H}_1)^-$.

By using Lemma 1(i) and the fact that \mathscr{C} (and therefore \mathscr{C}^- too [11, §2]) is invariant under similarities, we conclude that T belongs to $\mathscr{C}_{w^{\bullet}}(\mathscr{K})^-$.

In the nonseparable case, $T_1 = \bigoplus_{\nu \in \Gamma} T_{1\nu}$ (T_1 is unitarily equivalent to the *orthogonal* direct sum of the family $\{T_{1\nu}\}_{\nu \in \Gamma}$), where $\operatorname{card}(\Gamma) = \dim \mathcal{K}$ and $\sigma_0(T_{1\nu}) = \emptyset$ for all $\nu \in \Gamma$ (see, e.g., [10, Theorem 3]).

Combining this decomposition with the *proof* of [9, Theorem 3] we can find a sequence $\{A_n = \bigoplus_{\nu \in \Gamma} A_{1\nu n}\}_{n=1}^{\infty}$ (the decomposition of \mathcal{K}_1 being the same as for T_1 , of course) of operators in $\mathcal{L}(\mathcal{K}_1)$ such that $A_{1\nu n}$ is similar to an operator in a finite family $\{B_1, B_2, \ldots, B_{r(n)}\}$, $\{B_j\}' = \{B_j\}''$ does not contain any nonzero compact operator and $\{A_n\}' \cap \mathcal{K}(\mathcal{K}_1) = \{0\}$ for every $n = 1, 2, 3, \ldots$ Exactly as in the separable case, we conclude that $T \in \mathcal{R}_{\infty} \cdot (\mathcal{K})^-$. \square

We close the paper with some remarks and open problems.

(a) If $\mathcal K$ is a complex separable infinite dimensional Hilbert space and K is unitarily equivalent to the orthogonal direct sum of the compact operators $\{(1/k)Q_k\}_{k=1}^{\infty}$ $(K \cong \bigoplus_{k=1}^{\infty}(1/k)Q_k)$, where Q_k is the operator defined in the proof of Lemma 1(ii), then $K \in \mathcal K$ and the arguments used in that lemma show that $K \in \text{Ran}(\delta_K)^- \cap \{K\}'$; furthermore, if $L \cong \bigoplus_{k=1}^{\infty}(1/k!)^2Q_k$, then $L \in \delta_K(\mathcal K) \cap \{K\}'$. Thus, $\mathcal K = \bigcup \{\text{Ran}(\delta_K)^- \cap \{K\}': K \in \mathcal K\}$ contains a quasinilpotent operator which is not nilpotent (similar examples can be obtained for an arbitrary infinite dimensional Banach space $\mathcal K$ by using Markushevich bases [17]).

Combining Lemma 1(ii) with a result of R. G. Douglas (every compact quasinilpotent is a norm limit of finite rank nilpotents [7, Problem 7]), it readily follows that $\mathscr{C}^- \cap \mathscr{K} = \mathscr{C}^-_w \cap \mathscr{K} = \mathscr{C} \mathscr{K}^- = \{ K \in \mathscr{K} : K \text{ is a quasinilpotent} \}.$

QUESTION 1. Is $\mathscr{Q} \cap \mathscr{K}$ a proper subset of $\mathscr{Q} \mathscr{K}^-$? Is $\mathscr{Q} \mathscr{K}$ a proper subset of $\mathscr{Q} \mathscr{K}^-$?

QUESTION 2. Does $1 - K \in \mathcal{C}$ for some nonzero compact quasinilpotent K?

(b) By a celebrated theorem of J. H. Anderson [1], it readily follows that if $N = (\text{Nilpotent acting on a finite dimensional space}) \oplus \{ \bigoplus_{\lambda \in \Lambda} I_{\lambda} \}$, where Λ is an arbitrary bounded subset of \mathbb{C} and I_{λ} is the identity operator on a Hilbert space \mathcal{H}_{λ} of *infinite dimension*, then $N \in \mathcal{C}$. On the other hand, if

$$L = \int_{\sigma(T)} \lambda \ dE_{\lambda}$$

is the spectral decomposition of the normal operator L and there exists a Borel set $\Omega \subset \mathbb{C} \setminus \{0\}$ such that $E(\Omega) \neq 0$ and $L_{\Omega} = L | E(\Omega) \mathcal{K}$ has uniform finite multiplicity (the reader is referred to [8] for definitions and properties), then $L \notin \mathcal{C}$. (Proof. $C(A_{\Omega}) = [\text{multiplicity of } L_{\Omega}]$ for all $A_{\Omega} \in \{L_{\Omega}\}'$. Now apply Lemmas 2 and 3.) In particular, if U is the bilateral shift, then $U^{(n)} = U + U + \cdots + U$ (n copies) belongs to $\mathcal{C} \setminus \mathcal{C}$, $n = 1, 2, \ldots$

QUESTION 3. Which normal operators belong to \mathcal{Q} ? Does $U^{(\infty)} = U \oplus U \oplus U \oplus \ldots$ belong to \mathcal{Q} ?

(c) If \mathcal{K} is separable, then $T \in \mathcal{L}(\mathcal{K})$ is biquasitriangular if $\operatorname{ind}(\lambda - T) = 0$ for all $\lambda \in \mathbb{C}$ such that $\lambda - T$ is a semi-Fredholm operator [2]; for a nonseparable \mathcal{K} , biquasitriangularity is defined in terms of the weighted spectra of T (see [10]). Let (BQT) denote the class of all biquasitriangular operators acting in \mathcal{K} .

The above mentioned consequence of Anderson's theorem and the fact that \mathscr{C}^- is invariant under similarities imply that $S(N)^- \subset \mathscr{C}^-$, where $S(N) = \{WNW^{-1}: W \text{ is invertible in } \mathscr{C}(\mathscr{K})\}$, for every N as in (b), whence we obtain the following

COROLLARY 1.
$$(BQT) \setminus \mathfrak{B} \subset \mathfrak{C}^-$$
. In particular, $(T) \setminus \mathfrak{B} \subset \mathfrak{C}^-$.

PROOF. It follows from [3] and [10] (see also [12], [18]) that $(BQT) \setminus \mathfrak{B} = [\bigcup \{S(N)^-: N \text{ as in } b)\}]^-$ (the outer closure is irrelevant in the separable case). Hence, $(BQT) \setminus \mathfrak{B} \subset \mathfrak{C}^-$. \square

Conjecture. $\mathfrak{A}^- = (BQT) \setminus \mathfrak{B}$.

(d) Is $\mathcal{L}(\mathcal{K}) = \bigcup \{ \operatorname{Ran}(\delta_A)^- : A \in \mathcal{L}(\mathcal{K}) \}$ [15]? Observe that if P_0 is a rank one orthogonal projection, the proof of Lemma 3 shows that $I + P_0$ is orthogonal to $\operatorname{Ran}(\delta_A)$ for all $A \in \{P_0\}'$ in the sense that

$$dist\{I + P_0, Ran(\delta_A)\} = ||I + P_0|| = 2.$$

QUESTION 4. Does $I + P_0 \in \text{Ran}(\delta_A)^-$ for some $A \in \mathcal{C}(\mathcal{K})$?

REFERENCES

- 1. J. H. Anderson, Derivation ranges and the identity, Bull. Amer. Math. Soc. 79 (1973), 705-708. MR 48 #880.
- 2. C. Apostol, C. Foias and D. Voiculescu, Some results on non-quasitriangular operators. IV, Rev. Roumaine Math. Pures Appl. 18 (1973), 487-514. MR 48 #12109a.
- 3. J. Barria and D. A. Herrero, Closure of similarity orbits of Hilbert space operators. IV: Normal operators, J. London Math. Soc. (2) 17 (1978), 525-536.
- 4. A. Brown and C. Pearcy, Structure of commutators of operators, Ann. of Math. (2) 82 (1965), 112-127. MR 31 #2612.
 - 5. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1957.
 - 6. P. R. Halmos, A Hilbert space problem book, Van Nostrand, Princeton, N. J., 1967.
 - 7. _____, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933.

 8 Introduction to Hilbert space and to the theory of spectral multiplicity. Che.
- 8. _____, Introduction to Hilbert space and to the theory of spectral multiplicity, Chelsea, New York, 1951.
- 9. D. A. Herrero, Quasisimilar operators with different spectra, Acta. Sci. Math. (Szeged) (to appear).
- 10. _____, Norm limits of nilpotent operators and weighted spectra in non-separable Hilbert spaces, Rev. Un. Mat. Argentina 27 (1975), 83-105.

- 11. _____, Clausura de las órbitas de similaridad de operadores en espacios de Hilbert, Rev. Un. Mat. Argentina 27 (1976), 244-260.
- 12. _____, Closure of similarity orbits of Hilbert space operators. II: Normal operators, J. London Math. Soc. (2) 13 (1976), 299-316.
- 13. D. A. Herrero and N. Salinas, Operators with disconnected spectra are dense, Bull. Amer. Math. Soc. 78 (1972), 525-526.
- 14. _____, Analytically invariant and bi-invariant subspaces, Trans. Amer. Math. Soc. 173 (1973), 117-136.
- 15. H. W. Kim, On the unilateral shift and the norm closure of the range of a derivation, Math. Japon. 19 (1974), 251-256. MR 53 \$3783.
- 16. _____, On compact operators in the weak closure of the range of a derivation, Proc. Amer. Math. Soc. 40 (1973), 482–486. MR 47 #7502.
 - 17. J. T. Marti, Introduction to the theory of bases, Springer-Verlag, New York, 1969.
- 18. D. Voiculescu, Norm-limits of algebraic operators, Rev. Roumaine Math. Pures Appl. 19 (1974), 371-378.
 - 19. J. P. Williams, On the range of a derivation, Pacific J. Math. 38 (1971), 273-279.

DEPARTAMENTO DE MATEMATICAS, INSTITUTO VENEZOLANO DE INVESTIGACIONES CIENTÍFICAS, AP 1827, CARACAS 101, VENEZUELA