ON Ext$^*_E(K_*(K), K_*(MU))$

FRANCIS CLARKE

Abstract. In this note a spectral sequence is constructed which is used to prove the existence of elements of nonzero homological degree in $\text{Ext}^*_E(K_*(K), K_*(MU))$. Examples of specific elements in terms of representatives in the cobar construction are given.

1. Introduction and statement of results. If E is a multiplicative spectrum such that $E_*(E)$ is a flat $E_*(E)$-module, then, under certain conditions listed in [2, pp. 317–318], there is, for spectra X and Y, a spectral sequence

$$\text{Ext}^*_E(E_*(X), E_*(Y)) \Rightarrow [X, Y]^E_*,$$

where $[X, Y]^E_*$ denotes the set of morphisms in a certain category of spectra. Roughly speaking, $[X, Y]^E$ is $[X, Y]$ modulo those maps which E-theory cannot detect. The Ext groups are computed in the category of comodules over $E_*(E)$.

Taking $E = K$, $X = S^0$, $Y = MU$ we have a spectral sequence whose E_2-term is $\text{Ext}^*_E(K_*(K), K_*(MU))$. However, K is not connective, and so assumption (iii)(b) on p. 317 of [2] does not hold; thus we do not have the convergence part of Theorem 15.1 of Part III of [2]. On the other hand the edge-homomorphism

$$\pi_*(MU) \to \text{Ext}^*_E(K_*(K), K_*(MU)) = PK_*(MU)$$

is an isomorphism; this is equivalent to the Hattori-Stong theorem; see [2, Theorem 14.1 of Part II] or [7, Theorem 20.34].

It seemed natural to suspect that

$$\text{Ext}^*_E(K_*(K), K_*(MU)) = 0 \quad \text{for } p \neq 0$$

and that the spectral sequence collapsed. The hope was that, if one could prove this, the convergence problem might be circumvented and new proofs of the Hattori-Stong theorem and Milnor's theorem on the structure of $\pi_*(MU)$ obtained. See [7, pp. 516–517].

The purpose of this note is to prove that this conjecture is false. That is, we show that $\text{Ext}^*_E(K_*(K), K_*(MU))$ contains nonzero elements of positive homological degree. Our proof involves considering $K_*(MU)$ at the same time as a left $K_*(K)$-comodule and as a right $MU_*(MU)$-comodule.
THEOREM 1. There is a (trigraded) spectral sequence with E_2-term

$$\text{Ext}_{K_*}^{p,q}(\pi_*(K), K_*(MU))$$

which converges to $\text{Ext}_{K_*}^{p,q}(\pi_*(K), K_*(MU))$.

Here the E_2-term is calculated as follows. The inner Ext groups are computed in the category of left $K_*(K)$-comodules; each $\text{Ext}_{K_*}^{p,q}(\pi_*(K), K_*(MU))$ is a right $MU_*(MU)$-comodule and the outer Ext groups are defined in the category of such comodules. More details of this algebra will be found below.

COROLLARY. $\text{Ext}_{K_*}^{p,q}(\pi_*(K), K_*(MU))$ is nonzero for some positive q.

PROOF OF COROLLARY FROM THEOREM 1. If the Corollary is false the spectral sequence of the Theorem has

$$E_2^{p,q} = \begin{cases} \text{Ext}_{MU_*}^{p,q}(\pi_*(MU), \pi_*(MU)), & q = 0, \\ 0, & q \neq 0. \end{cases}$$

(Note that this Ext group is taken in the category of right $MU_*(MU)$-comodules; but it is clearly isomorphic to the usual E_2-term of the Adams-Novikov spectral sequence.)

Now the spectral sequence collapses giving

$$\text{Ext}_{MU_*}^{p,q}(\pi_*(MU), \pi_*(MU)) = \text{Ext}_{K_*}^{p,q}(\pi_*(K), \pi_*(K)).$$

But this contradicts various calculations made of these groups. For example,

$$\text{Ext}_{MU_*}^{1,k}(\pi_*(MU), \pi_*(MU)) = 0 \quad \text{for } k < 0,$$

while

$$\text{Ext}_{K_*}^{1,2n}(\pi_*(K), \pi_*(K)) = Z/m(n)Z \quad \text{for all } n \in Z \quad [5].$$

Alternatively,

$$\text{Ext}_{MU_*}^{1,2n}(\pi_*(MU), \pi_*(MU)) = Z/12Z \quad [6], [8].$$

while

$$\text{Ext}_{K_*}^{1,2n}(\pi_*(K), \pi_*(K)) = Z/24Z.$$
Here $\psi = \psi_{MU}$ is the usual map of [1, Lecture 3], and ψ' is defined by the same construction, but with everything switched from left to right throughout. Thus ψ' is the composition

$$K_*(MU) \xrightarrow{t} MU_*(K) \xrightarrow{\psi_K} MU_*(MU) \otimes_{\pi_*(MU)} MU_*(MU)$$

where the last isomorphism sends $\alpha \otimes \beta$ to $t^*\beta \otimes ca$, c being the canonical antiautomorphism of $MU_*(MU)$, and t the switch map.

The following diagram commutes:

$$
\begin{array}{ccc}
K_*(MU) & \xrightarrow{\psi} & K_*(K) \otimes_{\pi_*(K)} K_*(MU) \\
\downarrow \psi & & \downarrow 1 \otimes \psi' \\
K_*(MU) \otimes_{\pi_*(MU)} MU_*(MU) & \xrightarrow{\psi \otimes 1} & K_*(K) \otimes_{\pi_*(K)} K_*(MU) \otimes_{\pi_*(MU)} MU_*(MU) \\
\end{array}
$$

That is, ψ is a morphism of right $MU_*(MU)$-comodules and ψ' is a morphism of left $K_*(K)$-comodules.

Lemma.

$$\text{Ext}_{MU_*(MU)}^p(\pi_*(MU), MU_*(K)) = \begin{cases}
\pi_*(K), & p = 0, \\
0, & p \neq 0.
\end{cases}$$

Proof. By the Conner-Floyd theorem, $MU_*(K) = MU_*(MU) \otimes_{\pi_*(MU)} \pi_*(K)$; thus $MU_*(K)$ is an extended $MU_*(MU)$-comodule and the lemma follows [2, p. 321] or [7, Chapter 19].

It follows that, in terms of right $MU_*(MU)$-comodules,

$$\text{Ext}_{MU_*(MU)}^p(\pi_*(MU), K_*(MU)) = \begin{cases}
\pi_*(K), & p = 0, \\
0, & p \neq 0.
\end{cases}$$

If M is a left comodule over a two-sided coalgebra C with ground ring R, then $\text{Ext}_C(R, M)$ may be computed as the homology of the cobar complex

$$M \xrightarrow{d_0} \bar{C} \otimes_R M \xrightarrow{d_1} \bar{C} \otimes_R \bar{C} \otimes_R M \xrightarrow{d_2} \cdots,$$

where $\bar{C} = \ker\{e: C \to R\}$ and

$$d_i(c_1 \otimes \cdots \otimes c_i \otimes m) = 1 \otimes c_1 \otimes \cdots \otimes c_i \otimes m + (-1)^{i+1} c_1 \otimes \cdots \otimes c_i \otimes m.$$

Similarly, we can form a cobar resolution for right comodules. Let us write $M = K_*(MU)$, $C = K_*(K)$, $R = \pi_*(K)$, $D = MU_*(MU)$ and $S = \pi_*(MU)$.

ON \(\text{Ext}_{K_s(K)}(\pi_s(K), K_s(MU)) \)

Since the structure maps \(M \overset{\psi}{\to} C \otimes_R M \) and \(M \overset{\psi}{\to} M \otimes_S D \) commute, we may put both cobar complexes together to form a double complex.

\[
\begin{array}{cccc}
\begin{array}{c}
\bar{C} \otimes_R \bar{C} \otimes_R M \\
\uparrow \\
\bar{C} \otimes_R M \\
\uparrow \\
M
\end{array} & \to &
\begin{array}{c}
\bar{C} \otimes_R \bar{C} \otimes_R M \otimes_S D \\
\uparrow \\
\bar{C} \otimes_R M \otimes_S D \\
\uparrow \\
M \otimes_S D
\end{array} & \to & \cdots
\end{array}
\]

Now a double complex \(A \) has associated with it two spectral sequences, whose \(E \)-terms are \(H_1 H_{II} A \) and \(H_{II} H_1 A \), respectively (where \(H_1 \) represents homology with respect to the horizontal differentials and \(H_{II} \) with respect to the vertical differentials), and both of which converge to the total homology \(H(A) \) \([4, \text{pp. 331-332}]\). We will see that the second spectral sequence collapses, allowing us to compute \(H(A) \), and then the first spectral sequence will be that of Theorem 1.

\(C \) and \(D \), and hence \(\bar{C} \) and \(\bar{D} \), are flat modules over \(R \) and \(S \). By the Lemma, the first row is exact, and so all the rows are exact and, thus,

\[
H_1(A)^{p,q} = \begin{cases}
\bar{C} \otimes_R \cdots \otimes_R \bar{C} & (q \text{ factors}), \\
0 & p = 0, \\
& p \neq 0,
\end{cases}
\]

giving

\[
H_{II} H_1(A)^{p,q} = \begin{cases}
\text{Ext}_C^q(R, R), & p = 0, \\
0, & p \neq 0.
\end{cases}
\]

We must therefore have \(H(A) = \text{Ext}_C^*(R, R) \).

Turning to the first spectral sequence, we know that the first column has \(\text{Ext}_C^*(R, M) \) as its homology. Hence by the flatness of \(\bar{D} \), the \(q \)th column has homology \(\text{Ext}_C^*(R, M) \otimes_S \bar{D} \otimes_S \cdots \otimes_S \bar{D} \) (\(q \) factors). It follows that the \(E_2 \)-term of the first spectral sequence is \(\text{Ext}_D^p(S, \text{Ext}_C^*(R, M)) \). Restoring the notation gives Theorem 1.

3. Nonzero elements in \(\text{Ext}_C^*(K_s(K), K_s(MU)) \). We show here that, in the standard notation of \([2]\) and \([7]\),

\[
(u^n - v^n)/m(n) \otimes 1 \in K_s(K) \otimes_{\pi_s(K)} K_s(MU)
\]

is a cycle in the cobar complex for computing \(\text{Ext}_{K_s(K)}(\pi_s(K), K_s(MU)) \), which, for \(n \) negative, gives an element of order \(m(n) \) in \(\text{Ext}^{1,2n}_1 \), and, for \(n = 2 \), gives an element of order 2 in \(\text{Ext}^{1,4}_1 \).

We can see this as follows. \((u^n - v^n)/m(n) \otimes 1\) is a cycle because \((u^n - v^n)/m(n) \in K_{2n}(K)\) is primitive \([5]\).

\[
d_0: K_s(MU) \to K_s(K) \otimes_{\pi_s(K)} K_s(MU)
\]
is defined by $d_0\alpha = \psi\alpha - 1 \otimes \alpha$. Write

$$K_*(MU) = \pi_*(K)[b_1, b_2, \ldots] = \mathbb{Z}[t, t^{-1}][b_1, b_2, \ldots];$$

then $d_0t^n = (u^n - v^n) \otimes 1$.

Now suppose that $k[(u^n - v^n)/m(n) \otimes 1] = 0$ in $\text{Ext}^{1,2n}$, so that there exists $\alpha \in K_*(MU)$ such that

$$d_0\alpha = k(u^n - v^n)/m(n) \otimes 1.$$

Then $d_0(m(n)\alpha - kt^n) = 0$, and $m(n)\alpha - kt^n$ is an element of $PK_{2n}(MU)$, nonzero unless $\alpha = kt^n/m(n)$, and k is a multiple of $m(n)$. But if n is negative, $PK_{2n}(MU) \cong \pi_{2n}(MU) = 0$.

Similarly, $[(u^2 - v^2)/24 \otimes 1]$ has order 2 in $\text{Ext}^{1,4}$. For Proposition 17.38 of [7] gives

$$d_0(2b_2 - b_1 + tb_1) = (v^2 - u^2)/12 \otimes 1.$$

If there exists $\alpha \in K_*(MU)$ such that $d_0\alpha = (u^2 - v^2)/24 \otimes 1$, then, as before, $2\alpha + 2b_2 - b_1^2 + tb_1 \in PK_*(MU)$. But (see [7, p. 437]) $PK_*(MU)$ is generated by $3b_2 - 2b_1^2 + tb_1$ and $(2b_1 + t)^2$. Then we have, for some integers A and B,

$$2\alpha + 2b_2 - b_1^2 + tb_1 = A(3b_2 - 2b_1^2 + tb_1) + B(2b_1 + t)^2,$$

and the coefficient of b_1^2 in 2α is $4B - 2A + 1$, giving a contradiction. Hence $[(u^2 - v^2)/24 \otimes 1]$ has order 2.

References

2. ———, *Stable homotopy and generalized homology*, Univ. of Chicago Math. Lecture Notes, 1974.

Department of Pure Mathematics, University College of Swansea, Swansea, Wales