$k$-regular mappings of $2^{n}$-dimensional Euclidean space
HTML articles powered by AMS MathViewer
- by Michael E. Chisholm
- Proc. Amer. Math. Soc. 74 (1979), 187-190
- DOI: https://doi.org/10.1090/S0002-9939-1979-0521896-8
- PDF | Request permission
Abstract:
A map $f:X \to {R^n}$ is said to be k-regular if whenever ${x_1}, \ldots ,{x_k}$ are distinct points of X, then $f({x_1}), \ldots ,f({x_k})$ are linearly independent. Using configuration spaces and homological methods, it is shown that there does not exist a k-regular map from ${R^n}$ into ${R^{n(k - \alpha (k)) + \alpha (k) - 1}}$ where $\alpha (k)$ denotes the number of ones in the dyadic expansion of k and n is a power of 2.References
- V. G. Boltjanskiĭ, S. S. Ryškov, and Ju. A. Šaškin, On $k$-regular imbeddings and on applications to theory of function approximation, Uspehi Mat. Nauk 15 (1960), no. 6 (96), 125–132 (Russian). MR 0125567
- K. Borsuk, On the $k$-independent subsets of the Euclidean space and of the Hilbert space, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 351–356, XXIX (English, with Russian summary). MR 0088710 F. R. Cohen, The homology of ${\mathcal {C}_{n + 1}}$-spaces, $n \geqslant 0$, Lecture Notes in Math., vol. 533, Springer-Verlag, Berlin and New York, 1967, pp. 207-351.
- F. R. Cohen and D. Handel, $k$-regular embeddings of the plane, Proc. Amer. Math. Soc. 72 (1978), no. 1, 201–204. MR 524347, DOI 10.1090/S0002-9939-1978-0524347-1
- David Handel, Obstructions to $3$-regular embeddings, Houston J. Math. 5 (1979), no. 3, 339–343. MR 559974 —, Some existence and non-existence theorems for k-regular maps, Fund. Math. (submitted).
- David Handel and Jack Segal, On $k$-regular embeddings of spaces in Euclidean space, Fund. Math. 106 (1980), no. 3, 231–237. MR 584495, DOI 10.4064/fm-106-3-231-237
- J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973. MR 0420609, DOI 10.1007/BFb0068547 —, The homology of ${E_\infty }$-spaces, Lecture Notes in Math., vol. 533, Springer-Verlag, Berlin and New York, 1967, pp. 1-68.
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554, DOI 10.1515/9781400881826
- Stewart Priddy, Dyer-Lashof operations for the classifying spaces of certain matrix groups, Quart. J. Math. Oxford Ser. (2) 26 (1975), no. 102, 179–193. MR 375309, DOI 10.1093/qmath/26.1.179
- Ivan Singer, Best approximation in normed linear spaces by elements of linear subspaces, Die Grundlehren der mathematischen Wissenschaften, Band 171, Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970. Translated from the Romanian by Radu Georgescu. MR 0270044, DOI 10.1007/978-3-662-41583-2
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 74 (1979), 187-190
- MSC: Primary 55S99; Secondary 41A50
- DOI: https://doi.org/10.1090/S0002-9939-1979-0521896-8
- MathSciNet review: 521896