Extending monotone decompositions of manifolds
HTML articles powered by AMS MathViewer
- by John J. Walsh
- Proc. Amer. Math. Soc. 74 (1979), 197-201
- DOI: https://doi.org/10.1090/S0002-9939-1979-0521898-1
- PDF | Request permission
Abstract:
Let ${M^m}\;(m \geqslant 3)$ be a compact, connected PL manifold and let $X \subseteq M$ be a proper, closed subset of the interior of M such that for each open, connected subset $U \subseteq M$ either $U - (X \cap U)$ is connected or $X \cap {\text {bd}}(U) \ne \emptyset$. Let P be a connected and simply connected polyhedron with $\dim P \geqslant 3$. There exists a monotone mapping f from M onto P with each component of X being a point-inverse of f. In the case with M oriented and P the m-sphere, there exists such a monotone mapping of each degree.References
- Ralph J. Bean, Repairing embeddings and decompositions in $S^{3}$, Duke Math. J. 36 (1969), 379β385. MR 243499
- R. H. Bing, Extending monotone decompositions of 3-manifolds, Trans. Amer. Math. Soc. 149 (1970), 351β369. MR 263051, DOI 10.1090/S0002-9947-1970-0263051-1
- Donald Coram, Semicellularity, decompositions and mappings in manifolds, Trans. Amer. Math. Soc. 191 (1974), 227β244. MR 356068, DOI 10.1090/S0002-9947-1974-0356068-3
- John G. Hocking, Approximations to monotone mappings on non-compact two dimensional manifolds, Duke Math. J. 21 (1954), 639β651. MR 63659
- R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), no.Β 4, 416β428. MR 1501320, DOI 10.1090/S0002-9947-1925-1501320-8
- J. H. Roberts and N. E. Steenrod, Monotone transformations of two-dimensional manifolds, Ann. of Math. (2) 39 (1938), no.Β 4, 851β862. MR 1503441, DOI 10.2307/1968468
- John J. Walsh, Monotone and open mappings on manifolds. I, Trans. Amer. Math. Soc. 209 (1975), 419β432. MR 375326, DOI 10.1090/S0002-9947-1975-0375326-0
- John J. Walsh, Monotone and open mappings onto $ANRβs$, Proc. Amer. Math. Soc. 60 (1976), 286β288 (1977). MR 425888, DOI 10.1090/S0002-9939-1976-0425888-6
- John J. Walsh, Extending mappings to monotone mappings, Houston J. Math. 3 (1977), no.Β 4, 579β592. MR 458441
- J. W. T. Youngs, Homeomorphic approximations to monotone mappings, Duke Math. J. 15 (1948), 87β94. MR 24623
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 74 (1979), 197-201
- MSC: Primary 57N15; Secondary 54B15
- DOI: https://doi.org/10.1090/S0002-9939-1979-0521898-1
- MathSciNet review: 521898