Dual $A^{\ast }$-algebras of the first kind
HTML articles powered by AMS MathViewer
- by David L. Johnson and Charles D. Lahr
- Proc. Amer. Math. Soc. 74 (1979), 311-314
- DOI: https://doi.org/10.1090/S0002-9939-1979-0524307-1
- PDF | Request permission
Abstract:
Let A be an ${A^\ast }$-algebra of the first kind. It is proved that A has property P2 of Máté if and only if ${A^2}$ is dense in A if and only if A possesses an (operator-bounded) approximate identity. Further, it is shown that an ${A^\ast }$-algebra of the first kind having property P2 is a dual algebra if and only if it is a modular annihilator algebra. As applications, these results are used to strengthen certain theorems about Hilbert algebras.References
- Bruce A. Barnes, Banach algebras which are ideals in a Banach algebra, Pacific J. Math. 38 (1971), 1–7; correction, ibid. 39 (1971), 828. MR 310640, DOI 10.2140/pjm.1971.38.1
- Bruce A. Barnes, Examples of modular annihilator algebras, Rocky Mountain J. Math. 1 (1971), no. 4, 657–665. MR 288581, DOI 10.1216/RMJ-1971-1-4-657
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- David L. Johnson and Charles D. Lahr, Multipliers and derivations of Hilbert algebras, Math. Japon. 25 (1980), no. 1, 43–54. MR 571262 —, The trace class of an arbitrary Hilbert algebra (to appear). C. A. Jones, Approximate identities and multipliers, Ph. D. Dissertation, Dartmouth College, 1978.
- Michael R. W. Kervin, The trace-class of a full Hilbert algebra, Trans. Amer. Math. Soc. 178 (1973), 259–270. MR 318900, DOI 10.1090/S0002-9947-1973-0318900-8
- L. Máté, The Arens product and multiplier operators, Studia Math. 28 (1966/67), 227–234. MR 215095, DOI 10.4064/sm-28-3-227-234
- Edith A. McCharen, A characterization of dual $B^{\ast }$-algebras, Proc. Amer. Math. Soc. 37 (1973), 84. MR 306927, DOI 10.1090/S0002-9939-1973-0306927-7
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Helmut H. Schaefer, Topological vector spaces, Graduate Texts in Mathematics, Vol. 3, Springer-Verlag, New York-Berlin, 1971. Third printing corrected. MR 0342978, DOI 10.1007/978-1-4684-9928-5
- B. J. Tomiuk, Modular annihilator $A^{\ast }$-algebras, Canad. Math. Bull. 15 (1972), 421–426. MR 317060, DOI 10.4153/CMB-1972-076-0
- B. J. Tomiuk, Multipliers on dual $A^*$-algebras, Proc. Amer. Math. Soc. 62 (1977), no. 2, 259–265. MR 433215, DOI 10.1090/S0002-9939-1977-0433215-4
- Bertram Yood, Ideals in topological rings, Canadian J. Math. 16 (1964), 28–45. MR 158279, DOI 10.4153/CJM-1964-004-2
- Bertram Yood, Hilbert algebras as topological algebras, Ark. Mat. 12 (1974), 131–151. MR 380429, DOI 10.1007/BF02384750
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 74 (1979), 311-314
- MSC: Primary 46H05; Secondary 46K15, 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1979-0524307-1
- MathSciNet review: 524307