Multipliers of $A^{\ast }$-algebras
HTML articles powered by AMS MathViewer
- by David L. Johnson and Charles D. Lahr
- Proc. Amer. Math. Soc. 74 (1979), 315-317
- DOI: https://doi.org/10.1090/S0002-9939-1979-0524308-3
- PDF | Request permission
Abstract:
Let A be an ${A^\ast }$-algebra of the first kind with ${C^\ast }$-algebra completion $\mathfrak {A}$. It is known that if A is dual then ${A^2}$ is dense in A and the Banach algebras ${M_L}(A)$ and ${M_L}(\mathfrak {A})$ of left multipliers of A and $\mathfrak {A}$ are algebra isomorphic. In this note it is proved that ${M_L}(A)$ and ${M_L}(\mathfrak {A})$ are topologically algebra isomorphic when A is an arbitrary ${A^\ast }$-algebra of the first kind such that ${A^2}$ is dense in A. As a consequence, it follows that every left multiplier of a replete Hilbert algebra A is automatically continuous.References
- Charles A. Akemann and Gert K. Pedersen, Complications of semicontinuity in $C^{\ast }$-algebra theory, Duke Math. J. 40 (1973), 785–795. MR 358361
- Gregory F. Bachelis and James W. McCoy, Left centralizers of an $H^{\ast }$-algebra, Proc. Amer. Math. Soc. 43 (1974), 106–110. MR 333745, DOI 10.1090/S0002-9939-1974-0333745-7
- Bruce A. Barnes, Banach algebras which are ideals in a Banach algebra, Pacific J. Math. 38 (1971), 1–7; correction, ibid. 39 (1971), 828. MR 310640, DOI 10.2140/pjm.1971.38.1
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067–1073. MR 239419, DOI 10.2307/2373290
- David L. Johnson and Charles D. Lahr, Multipliers and derivations of Hilbert algebras, Math. Japon. 25 (1980), no. 1, 43–54. MR 571262 —, Left multipliers of a replete Hilbert algebra (preprint).
- B. D. Malviya and B. J. Tomiuk, Multiplier operators on $B^{\ast }$-algebras, Proc. Amer. Math. Soc. 31 (1972), 505–510. MR 305085, DOI 10.1090/S0002-9939-1972-0305085-1
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- B. J. Tomiuk, Multipliers on dual $A^*$-algebras, Proc. Amer. Math. Soc. 62 (1977), no. 2, 259–265. MR 433215, DOI 10.1090/S0002-9939-1977-0433215-4
- B. J. Tomiuk and Pak-ken Wong, The Arens product and duality in $B^{\ast }$-algebras, Proc. Amer. Math. Soc. 25 (1970), 529–535. MR 259620, DOI 10.1090/S0002-9939-1970-0259620-0
- Bertram Yood, Hilbert algebras as topological algebras, Ark. Mat. 12 (1974), 131–151. MR 380429, DOI 10.1007/BF02384750
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 74 (1979), 315-317
- MSC: Primary 46H05; Secondary 46K15, 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1979-0524308-3
- MathSciNet review: 524308