On the norm of the canonical projection of $E^{\ast \ast \ast }$ onto $E^{\perp }$
HTML articles powered by AMS MathViewer
- by Jerry Johnson and John Wolfe
- Proc. Amer. Math. Soc. 75 (1979), 50-52
- DOI: https://doi.org/10.1090/S0002-9939-1979-0529211-0
- PDF | Request permission
Abstract:
For each number t with $1 < t \leqslant 2$, a renorming of ${c_0}$ is given for which $\left \| {I - P} \right \| = t$, where P is the canonical projection of $c_0^{ \ast \ast \ast }$ on $c_0^\ast$.References
- A. L. Brown, On the canonical projection of the third dual of a Banach space onto the first dual, Bull. Austral. Math. Soc. 15 (1976), no. 3, 351–354. MR 430744, DOI 10.1017/S0004972700022784
- Y. Benyamini, Near isometries in the class of $L^{1}$-preduals, Israel J. Math. 20 (1975), no. 3-4, 275–281. MR 377571, DOI 10.1007/BF02760332
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 75 (1979), 50-52
- MSC: Primary 46B10
- DOI: https://doi.org/10.1090/S0002-9939-1979-0529211-0
- MathSciNet review: 529211