On two questions of Halmos concerning subspace lattices
HTML articles powered by AMS MathViewer
- by W. E. Longstaff and Peter Rosenthal
- Proc. Amer. Math. Soc. 75 (1979), 85-86
- DOI: https://doi.org/10.1090/S0002-9939-1979-0529219-5
- PDF | Request permission
Abstract:
An example is constructed of a nonreflexive pentagonal lattice of subspaces. It follows that reflexivity is not invariant under lattice isomorphism, even for finite lattices.References
- Ciprian Foiaş, Invariant para-closed subspaces, Indiana Univ. Math. J. 21 (1971/72), 887–906. MR 293439, DOI 10.1512/iumj.1972.21.21072
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- P. R. Halmos, Reflexive lattices of subspaces, J. London Math. Soc. (2) 4 (1971), 257–263. MR 288612, DOI 10.1112/jlms/s2-4.2.257
- K. J. Harrison and W. E. Longstaff, Reflexive subspace lattices in finite-dimensional Hilbert spaces, Indiana Univ. Math. J. 26 (1977), no. 6, 1019–1025. MR 470708, DOI 10.1512/iumj.1977.26.26082
- R. E. Johnson, Distinguished rings of linear transformations, Trans. Amer. Math. Soc. 111 (1964), 400–412. MR 161884, DOI 10.1090/S0002-9947-1964-0161884-0
- E. Nordgren, M. Radjabalipour, H. Radjavi, and P. Rosenthal, On invariant operator ranges, Trans. Amer. Math. Soc. 251 (1979), 389–398. MR 531986, DOI 10.1090/S0002-9947-1979-0531986-6
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 75 (1979), 85-86
- MSC: Primary 47A15
- DOI: https://doi.org/10.1090/S0002-9939-1979-0529219-5
- MathSciNet review: 529219