Complete bases and Wallman realcompactifications
HTML articles powered by AMS MathViewer
- by Jose L. Blasco
- Proc. Amer. Math. Soc. 75 (1979), 114-118
- DOI: https://doi.org/10.1090/S0002-9939-1979-0529226-2
- PDF | Request permission
Abstract:
We study a particular class of separating nest generated intersection rings on a Tychonoff space X, that we call complete bases. They are characterized by the equality $\beta (\upsilon (X,\mathcal {D})) = \omega (X,\mathcal {D})$ between their associated Wallman spaces. It is proven that for each separating nest generated intersection ring $\mathcal {D}$ there exists a unique complete base $\hat {\mathcal {D}}$ such that $\upsilon (X,\mathcal {D}) = \upsilon (X,\widehat {\mathcal {D}})$. From this result we obtain a necessary and sufficient condition for the existence of a continuous extension to $\upsilon (X,\mathcal {D})$ of a real-valued function over X. Some applications of these results to certain inverse-closed subalgebras of $C(X)$ are given.References
- Richard A. Alò and Harvey L. Shapiro, Normal topological spaces, Cambridge Tracts in Mathematics, No. 65, Cambridge University Press, New York-London, 1974. MR 0390985
- H. L. Bentley and S. A. Naimpally, ${\cal L}$-realcompactifications as epireflections, Proc. Amer. Math. Soc. 44 (1974), 196–202. MR 365489, DOI 10.1090/S0002-9939-1974-0365489-X
- Anthony J. D’Aristotle, A note on ${\cal Z}$-realcompactifications, Proc. Amer. Math. Soc. 32 (1972), 615–618. MR 288730, DOI 10.1090/S0002-9939-1972-0288730-9
- Orrin Frink, Compactifications and semi-normal spaces, Amer. J. Math. 86 (1964), 602–607. MR 166755, DOI 10.2307/2373025
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
- Anthony W. Hager, On inverse-closed subalgebras of $C(X)$, Proc. London Math. Soc. (3) 19 (1969), 233–257. MR 244948, DOI 10.1112/plms/s3-19.2.233
- M. Henriksen and D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras, Fund. Math. 50 (1961/62), 73–94. MR 133698, DOI 10.4064/fm-50-1-73-94
- J. R. Isbell, Algebras of uniformly continuous functions, Ann. of Math. (2) 68 (1958), 96–125. MR 103407, DOI 10.2307/1970045
- E. F. Steiner, Wallman spaces and compactifications, Fund. Math. 61 (1967/68), 295–304. MR 222849, DOI 10.4064/fm-61-3-295-304
- A. K. Steiner and E. F. Steiner, Nest generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc. 148 (1970), 589–601. MR 263032, DOI 10.1090/S0002-9947-1970-0263032-8
- Maurice D. Weir, Hewitt-Nachbin spaces, North-Holland Mathematics Studies, No. 17, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0514909
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 75 (1979), 114-118
- MSC: Primary 54D60; Secondary 54D35
- DOI: https://doi.org/10.1090/S0002-9939-1979-0529226-2
- MathSciNet review: 529226