A THEOREM ON EXTENDING REPRESENTATIONS

RAYMOND C. FABEC

Abstract. We obtain sufficient conditions for a unitary representation of a closed subgroup \(M \) of a separable locally compact group \(G \) to have a unique unitary extension to \(G \). The conditions depend on the behavior of the representation on a closed normal subgroup \(N \) of \(G \) contained in \(M \). We then discuss an application of the theorem in particle physics.

Let \(N \) be a closed normal subgroup of a separable locally compact group \(G \), and let \(M \) be a closed subgroup of \(G \) containing \(N \). Let \(H = \{m \in M : gmg^{-1} \in M \text{ for } g \in G \} \). Assume \(L \) is a representation of \(M \) such that \(L|_N \) is type I, and \(L|_N = \int n(a)\alpha d\mu(\alpha), \mu \) a standard measure on \(\hat{N} \); i.e. there is a \(\mu \) conull set in \(\hat{N} \) which is standard. By the von Neumann selection theorem, there is a cross-section \(c \) from \(\hat{N} \) into the concrete irreducible representations of \(N \) such that \(c \) is Borel on a conull set in \(\hat{N} \). Then

\[
\int n(a)\alpha d\mu(\alpha) = \int n(a)c(\alpha) d\mu(\alpha),
\]

and this gives the primary decomposition of \(L|_N \). \(G \) acts on \(\hat{N} \) by \(\alpha \cdot g = \{R \cdot g : R \in \alpha\} \) where \((R \cdot g)(n) = R(gng^{-1}) \). We do the transitive case first.

Theorem 1. Assume \(\mu \) is supported on \(a_0 \cdot G \). Assume the stabilizer \(K \) of \(a_0 \) is contained in \(H \) and \(L|_H \cdot g \) is unitarily equivalent to \(L|_H \) for each \(g \in G \). Then \(L \) has a unique unitary extension to \(G \). In fact, there is a representation \(W \) of \(K \) such that \(\text{ind}_K^G W \) is the extension. This extension is irreducible precisely when \(W \) is irreducible.

Remark. \(L = \int_{G/M} \text{ind}_x^{\text{reg}_K} W \cdot x d\bar{\mu}(x) \) where \(\bar{\mu} \) is a quasi-invariant measure on \(G/M \).

Proof. Let \(P \) be the projection valued measure based on the Borel subsets of \(a_0 \cdot G \simeq K \setminus G \) giving the direct integral decomposition \(L|_N = \int n(\alpha)c(\alpha) d\mu(\alpha) \). Since \(L|_H \cdot g \simeq L \) for \(g \in G \), \(L|_N \cdot g \simeq L|_N \) for \(g \in G \); and the argument given by Mackey [4, p. 296], shows \(\mu \) is quasi-invariant and \(n(\alpha \cdot g^{-1}) = n(\alpha) \) for \(\mu \)-a.e. \(\alpha \) for each \(g \). Hence, since \(G \) acts transitively, \(n \) is essentially constant. Therefore

\[
L|_N \simeq n \int c(\alpha) d\mu(\alpha) = n \int c(\alpha) d\mu(\alpha) = n \int \omega \cdot \gamma(Kx) d\mu(Kx)
\]

Received by the editors February 27, 1978 and, in revised form, July 6, 1978.

AMS (MOS) subject classifications (1970). Primary 22D10, 22D30; Secondary 22E70.

1Research supported in part by a Louisiana State Summer Faculty Research Award.

© 1979 American Mathematical Society
0002-9939/79/0000-0283/$02.50

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(\omega \in \alpha_0 \) and \(\gamma: K \setminus G \to G \) is a Borel cross-section.

Since \(L_m |_{N} L^{-1}_m = L |_{N} \cdot m \simeq L |_{N} \) and \(n \int \omega \cdot \gamma(Kx) \, d\mu(Kx) \) is the central decomposition of \(L |_{N} \), \(L_m P(E)L^{-1}_m = P(E \cdot m^{-1}) \) for Borel subsets \(E \) of \(K \setminus G \) and \(m \in M \). Furthermore, the orbit space \((K \setminus G)^M \) of \(K \setminus G \) under \(M \) is isomorphic to \(G/M \). In fact \(KxM = x^{-1}KxM = xM \), for \(x^{-1}Kx \subset x^{-1}Hx = H \). Hence the orbit space is standard; and if \(\tilde{\mu} \) is the image of \(\mu \) under the map \(Kx \to xM \), \(\mu \) decomposes uniquely \(\tilde{\mu} \)-a.e. into an “integral of measures”, \(\mu = \int_{G/M} \mu_{xM} \, d\tilde{\mu}(xM) \), where each \(\mu_{xM} \) is a Borel measure on \(K \setminus G \) with \(\mu_{xM}(K \setminus G - KxM) = 0 \) (see [2, Theorem 11]). Since \(\mu \) is quasi-invariant under \(M \), \(\mu_{xM} \) is quasi-invariant under \(M \) for \(\tilde{\mu} \)-a.e. \(xM \).

The decomposition \(\mu = \int_{G/M} \mu_{xM} \, d\tilde{\mu}(xM) \) yields a decomposition of \(P \) into \(\int_{G/M} P(xM) \, d\tilde{\mu}(xM) \) where each \(P(xM) \) is a projection valued measure defined on the Borel subsets of \(xM \) satisfying \(P(xM)(E) = 0 \) iff \(\mu_{xM}(E) = 0 \). Define a projection valued measure \(Q \) on the Borel subsets of \(G/M \) by \(Q(F) = P(\bigcup F) \). Then

\[
L^{-1}_m Q(F)L_m = P\left(\bigcup F \cdot m \right) = P\left(\bigcup F \right) = Q(F).
\]

Therefore \(L \) decomposes into a direct integral over \(G/M \); namely, \(L = \int \Theta L(xM) \, d\tilde{\mu}(xM) \). Furthermore,

\[
L(xM)|_N = n \int_{KxM} \omega \cdot \gamma(Kz) \, d\mu_{xM}(Kz)
\]
and

\[
L(xM)(m^{-1})P(xM)(E)L(xM)(m) = P(xM)(E \cdot m),
\]

\(E \) any Borel subset of \(KxM \). Hence the pair \((L(xM), P(xM))\) forms a transitive system of imprimitivity based on the transitive \(M \) space \(KxM \). Let \(\sigma: G/M \to G \) be a Borel cross-section. By Mackey’s imprimitivity theorem [3, Theorem 6.6], \(L(xM) = \text{ind}_{M}^{G/M} \, \sigma(xM) \) \(W(xM) \), where \(W(xM) \) is a unitary representation of \(\sigma(xM)^{-1}K\sigma(xM) \). One can show \(W(xM)|_N \simeq \omega \cdot \sigma(xM) \).

We consider the representation \(L|_H \). The orbit space \((K \setminus G)^H \) of \(K \setminus G \) under \(H \) is isomorphic to \(H \setminus G \) since \(KxH = KxH^{-1}x = Hx \). Hence \(\mu = \int v_{Hx} \, d\tilde{v}(Hx) \) where \(\tilde{v} \) is the image of \(\mu \) under the map \(Kx \to Hx \) and \(v_{Hx} \) is an \(H \) quasi-invariant measure on \(Hx \). This decomposition, as before, gives a decomposition of \(P \) into \(\int \Theta \, P(Hx) \, d\tilde{v}(Hx) \).

\(\tilde{\mu} \) is the image of \(\tilde{v} \) under the map \(Hx \to xM \). Therefore \(\tilde{v} \) decomposes relative to \(\tilde{\mu} \):

\[
\tilde{v} = \int_{G/M} \tilde{v}_{xM} \, d\tilde{\mu}(xM), \quad \tilde{v}_{xM} \text{ a measure on } H \setminus G \text{ with } \tilde{v}_{xM}(H \setminus G - xM) = 0.
\]

Hence

\[
\mu = \int_{H \setminus G} v_{Hx} \, d\tilde{v}(Hx) = \int_{G/M} \int_{H \setminus G} v_{Hy} \, d\tilde{v}_{xM}(Hy) \, d\tilde{\mu}(xM)
\]

\[
= \int_{G/M} \mu_{xM} \, d\tilde{\mu}(xM).
\]
By uniqueness of decompositions, \(\nu_{xM} = \int_{H \setminus G} \nu_{Hy} \, d\nu_{xM}(Hy) \) for \(\tilde{\nu} \)-a.e. \(xM \). Furthermore, one has \(P(xM) = \int_{H \setminus G} P(Hy) \, d\nu_{xM}(Hy) \).

Define a projection valued measure \(Q^* \) on the Borel subsets of \(H \setminus G \) by \(Q^*(F) = P(\cup F) \). Then \(L_h Q^*(F) L_h^{-1} = Q^*(F) \) for \(h \in H \). Therefore \(L|_H \) decomposes into a direct integral:

\[
L|_H = \int_{H \setminus G} L(Hy) \, d\nu(Hy),
\]

where \(L(Hy)|_N = n_{H|_N} \omega \cdot \gamma(Kz) \, d\nu_{Hy}(Kz) \). Furthermore, since \(P(xM) = \int_{xM} P(Hy) \, d\nu_{xM}(Hy) \), one has

\[
L(xM)|_H = \int_{\sigma(xM)^{-1} K \sigma(xM)} \text{ind}_{\sigma(xM)} W(xM) \, d\nu_{xM}(Hy).
\]

This decomposition of \((L(xM), P(xM)) \) is precisely the one given by Mackey's subgroup theorem. Note \(KxM \) as an \(M \) space is isomorphic to \(\sigma(xM)^{-1} K \sigma(xM) \setminus M \) and the orbit space of \(KxM \) under \(H \) is isomorphic to the double coset space of \(\sigma(xM)^{-1} K \sigma(xM) \setminus H \) double cosets in \(M \). The correspondence with \(KxM \) carries the double coset \(\sigma(xM)^{-1} K \sigma(xM) \) double cosets in \(M \). Hence the double cosets of \(KxM \) are the \(H \) cosets in \(KxM \). Now let \(\rho: H \setminus G \rightarrow G \) be a Borel cross-section. Then \(\rho|_{KxM} \rightarrow G \) is a cross-section of the \(K \setminus H \) double cosets in \(KxM \) and \(Hy = K \sigma(xM) \sigma(xM)^{-1} \rho(Hy) H \). Therefore

\[
L(Hy) \simeq \int_{\rho(Hy)^{-1} K \sigma(Hy)} W(xM) \cdot \sigma(xM)^{-1} \rho(Hy)
\]

\(\tilde{\nu}_{xM} \)-a.e. \(Hy \). \(\tilde{\nu} \)-a.e. \(xM \). For more details, see the proof of the subgroup theorem [4, p. 227].

We now have

\[
L|_H \simeq \int_{H \setminus G} \text{ind}_{\rho(Hy)^{-1} K \sigma(Hy)} W(yM) \cdot \sigma(yM)^{-1} \rho(Hy) \, d\nu(Hy),
\]

and \(P = \int_{H \setminus G} P(Hy) \, d\nu(Hy) \) where \(P(Hy) \) is the canonical projection valued measure associated with the induced representation \(L(Hy) \). Therefore

\[
L|_H \simeq L|_H \cdot g \simeq \int_{H \setminus G} \text{ind}_{g^{-1} \rho(Hy)^{-1} K \sigma(Hy) g} W(yM) \cdot \sigma(yM)^{-1} \rho(Hy) g \, d\nu(Hy).
\]

Since \(\rho(Hy) g = \rho(Hyg) h \) for some \(h \),

\[
L|_H \simeq \int_{H \setminus G} \text{ind}_{\rho(Hyg)^{-1} K \sigma(Hyg)} W(yM) \cdot \sigma(yM)^{-1} \rho(Hyg) \, d\nu(Hy).
\]

In this last direct integral decomposition, \(P \) decomposes into \(P = \int_{H \setminus G} P(Hy) \cdot g \, d\nu(Hy) \) where \(P(Hy) \cdot g(E) = P(Hy)(E \cdot g^{-1}) \). Changing \(y \rightarrow yg^{-1} \) in the last decomposition yields

\[
L|_H \simeq \int_{H \setminus G} \text{ind}_{\rho(Hy)^{-1} K \sigma(Hy)} W((yg^{-1})M) \cdot \sigma((yg^{-1})M)^{-1} \rho(Hy) \, d\nu(Hy).
\]
and

\[P = \int \oplus P(H_yg^{-1}) \cdot g \, d\nu(H_y). \]

But

\[P(H_yg^{-1}) \cdot g = P(H_y). \]

Hence we have two decompositions of \((L|_H, P)\) relative to \(Q^*\). Therefore

\[\left(\text{ind } W(yg^{-1}M) \cdot \sigma(yg^{-1}M)^{-1} \rho(H_y), P(H_y) \right) \approx \left(\text{ind } W(yM) \cdot \sigma(yM)^{-1} \rho(H_y), P(H_y) \right) \]

for \(\nu\)-a.e. \(H_y\). It follows that

\[W(yg^{-1}M) \cdot \sigma(yg^{-1}M) \rho(H_y) \approx W(yM) \cdot \sigma(yM)^{-1} \rho(H_y) \]

for \(\nu\)-a.e. \(H_y\) for each \(g \in G\). Hence there is a representation \(W\) of \(K\) such that \(W(xM)\) is unitarily equivalent to the representation \(\sigma(xM)^{-1}k_\alpha(xM) \rightarrow W(k)\) for \(\nu\)-a.e. \(xM\). We then have

\[L \cong \int_{G/M} \text{ind} \, W \cdot \sigma(xM) \, d\mu(xM). \]

Let \(U = \text{ind}^G_W\). By Mackey's subgroup theorem, \(U\) extends \(L\). \(U\) is unique for if \(U\) is an extension of \(L\), \((U, P)\) is a transitive system of imprimitivity based on \(K \setminus G\). Hence \(U = \text{ind}^G_W\). But then

\[\left(\text{ind} \, W \cdot \sigma(xM), P(xM) \right) \cong \left(\text{ind} \, W' \cdot \sigma(xM), P(xM) \right) \]

for \(\mu\)-a.e. \(xM\). Hence \(W \cong W'\).

The commuting rings of \(U\) and \(W\) are isomorphic. Hence \(U\) is irreducible when \(W\) is. Q.E.D.

Remark. The stabilizer \(K\) of \(\alpha_0\) is contained in \(H\) if the stabilizer of \(\mu\)-a.e. \(\alpha\) is contained in \(M\).

We next assume \(\mu\) is based on a standard \(G\)-invariant subset \(S\) of \(\hat{N}\).

Theorem 2. Assume \(\mu\) is based on \(S\) and \(G\) acts regularly on \(S\) and \(L|_H \cdot g \cong L|_H\) for \(g \in G\). Then \(L\) has a unique extension from \(M\) to \(G\) provided that the stabilizer of \(\alpha\) is contained in \(M\) for \(\mu\)-a.e. \(\alpha\).

Proof. Let \(S^G\) be the orbit space for \(S\) under \(G\). Let \(\tilde{\mu}\) be the quotient measure. The action is regular if there exists a \(\tilde{\mu}\) conull set \(S_0\) in \(S^G\) such that \(\tilde{S}_0\) is standard. Replacing \(S\) by the inverse image \(S_0\) of \(\tilde{S}_0\) in \(S\), we may
assume S^G is standard. Let P be the projection valued measure defined in the proof of Theorem 1. The measure μ decomposes relative to $\tilde{\mu}$; $\mu = \int \mu_\xi \, d\tilde{\mu}(\xi)$ where each μ_ξ is a G quasi-invariant measure based on ξ. This leads to a decomposition of both P and L: $P = \int P_\xi \, d\tilde{\mu}(\xi)$ and $L = \int L_\xi \, d\tilde{\mu}(\xi)$.

Since the stabilizer of α is contained in M for μ-a.a. $\alpha \in S$, the stabilizer of $\alpha \in \tilde{\xi}$ is contained in M for $\mu_{\tilde{\xi}}$-a.a. α for $\mu_{\tilde{\xi}}$-a.a. $\tilde{\xi}$. Since $L|_H \cdot g \simeq L|_H$, $L^\perp|_H \cdot g \simeq L^\perp|_H$ for $\mu_{\tilde{\xi}}$-a.e. $\tilde{\xi}$. By Fubini’s theorem, for $\mu_{\tilde{\xi}}$-a.e. $\tilde{\xi}$, $L^\perp|_H \cdot g \simeq L^\perp|_H$ a.e. g. But $\{ g : L^\perp|_H \cdot g \simeq L^\perp|_H \}$ is a subgroup of G. Hence for $\mu_{\tilde{\xi}}$-a.e. $\tilde{\xi}$, $L^\perp|_H$ is invariant under G. Hence we may apply Theorem 1 and obtain an extension R^\perp of L^\perp to G for $\mu_{\tilde{\xi}}$-a.e. $\tilde{\xi}$. The extension is a Borel function of $\tilde{\xi}$ and hence $\int R^\perp \, d\tilde{\mu}(\tilde{\xi})$ is an extension of L. Since R^\perp is unique a.e. $\tilde{\xi}$, this extension is unique. Q.E.D.

Remark. These theorems remain valid for σ-representations. One can either work in the group extension or modify the above proofs.

As an application of the theorem we show how it is possible to determine the dynamics of a free particle system having time translations which do not commute with spatial translations. For instance the spatial transformations of \mathbb{R}^3 may be the Euclidean group $E_3 = \{(x, R) : x \in \mathbb{R}^3 \text{ and } R \in SO(3)\}$ with multiplication defined by $(x, R)(y, S) = (x + Ry, RS).$ Time translation by t, however, will have the property $t(x, R) = (e^t x, R)t$. This may occur, for instance, if physical space expands exponentially with time. In any case, for this group a free particle of spin j, j a half integer, is a projective representation U such that $U_{(x, R)f(y)} = e^{2\pi i x \cdot y} D_j(R)f(\mathbf{R} - y)$ for $f \in L^2(\mathbb{R}^3, C^{2j+1})$ where D_j is the projective irreducible representation of $SO(3)$ with dimension $2j + 1$. We shall, for convenience, assume j is an integer, for in this case D_j is an ordinary representation. Next note one has $M = E_3$ and $N = \mathbb{R}^3$. Then

$$U_{(0, R)} = (2j + 1) \int_{\mathbb{R}^3} e^{2\pi i x \cdot (y)} \, dx$$

and since

$$\exp(2\pi i x \cdot (y)) \cdot t(0, R) = \exp(2\pi i e^{-t} R^{-1} x \cdot (y)),$$

the orbit of $e_1 = (1, 0, 0)$ is almost all of \mathbb{R}^3. The stabilizer K of e_1 is $\{(y, R) : Re_1 = e_1, y \in \mathbb{R}^3\}$ while $H = M = E_3$. Hence Theorem 1 applies and we need only find W. Note $U_{|E_3} = \int_0^R W(r) \, dr$ where $W(r)$ is the representation of E_3 on $L^2(S_r, m_r, C^{2j+1})$, m_r the Lebesgue measure on the sphere of radius r, defined by

$$W(r)(t, R)f(s) = e^{2\pi i x \cdot s} D_j(R)f(\mathbf{R} - y).$$

One can show $W(r) = \text{ind}^M_K (W \cdot t) = \text{ind}^M_{Kt^{-1}} W \cdot t$ where $W(x, R) = e^{2\pi i x \cdot s} D_j(R)$ for $(x_1, x_2, x_3, R) \in K$. Hence $U = \text{ind}^G_K W$.

For more information on particle systems having these symmetries, see [1].
REFERENCES

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803