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SUBDIRECTLY IRREDUCIBLE ALGEBRAS IN REGULAR*

PERMUTABLE VARIETIES1

W. TAYLOR

Abstract. If A is a finite algebra in a regular, permutable variety (of finite

type), then the variety generated by A either contains an infinite subdirectly

irreducible algebra or contains only finitely many subdirectly irreducible

algebras. We conjecture that the hypothesis "regular and permutable"

cannot be fully removed.

Quackenbush asked [7] whether there exists a finite algebra 31 such that

T = HSP 21 has infinitely many finite subdirectly irreducible (s.i.) algebras

but no infinite s.i. algebras. He also asked, "Can it be of finite type; can it be

a groupoid, semigroup or group?" Except for groups (settled here, and

probably essentially known all along), these questions remain open. Baldwin

and Berman [2] relaxed the question to that of the existence of a locally finite

T of finite type with arbitrarily large finite s.i.'s but with no infinite s.i. They

were able to find such T which are locally finite but not of finite type, and

also of finite type but not locally finite. And recently Baldwin [1] came close:

his T is locally finite and of finite type, has large finite s.i.'s and exactly one

infinite s.i.

Here we show that there is no such 91 in a variety of finite type which is

congruence-regular and congruence-permutable. (See the theorem at the end of

this article; it was announced in [9].) We thank K. Baker, J. Baldwin, R.

Freese, W. Lampe and E. Nelson for valuable conversations about this

material.

We will assume that congruence-permutability is well known to the reader

(see e.g. [4, pp. 119 and 172]). And T is congruence-regular iff every con-

gruence on every 91 G T is determined by any one of its blocks. The main

fact we will need about congruence-regularity [3], [5], [10] is that it is

equivalent to the existence of T-terms P¡(x, y, z) (1 < y < 2N) and

G¡(x, y, z, w) (1 < i < N) such that T obeys the following identities:

Pj(x,x,z) = z       (Kj<2N),

x » Gx(x,y, z, Px(x,y, z)),

Gx(x,y, z, P2(x,y, z)) = G2(x,y, z, P3(x,y, z)),
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G2(x,y, z, P4(x,y, z)) = G3(x,y, z, P5(x,y, z)),

GN(x,y, z, P2N(x,y, z)) = y.

We will use these identities for our first lemma, which refines Mal'tsev's

well known description of principal congruence relations [4, p. 54]. Let us

suppose that each T-term o has been assigned an (integer-valued) rank

#a > 1 with the usual proviso that #£(a,, . . ., on) > each #a, (cf. [4, pp.

40-41]). For an algebraic function /: A -+A, define %f to be the smallest

value of %o for f(z) = o(z, ax, . . . , a„) (each a¡ E A). Define M, = max{#G,:

1 < z < N), and

M2 = the maximum rank of any term

P¡(G(xx, . . ., xk_x, a, xk+x, . . ., x„), v, w)       (1 < / < 2N)

for G any fundamental operation and o any term of rank < A/,. (The

numbers Mx and M2, of course, depend on the variety T, which for con-

venience we will keep fixed throughout this discussion.)

Let us now describe the principal congruence 9(a, b) for a, b E 31 G T.

Letting / and h denote algebraic functions of one variable, we recursively

define

A0={b),

4+1 = {*(<?): c E A¡, h(a) = a,U< M2)

and finally,

%(a, b) = \(f(a), f(c)): c E \J A„ #/ < Mx

Lemma 1. 8(a, b) is the transitive-symmetric hull of 90(a, b).

Proof. It is clearly enough to see that this hull is closed under the actions

of OAF's, i.e. algebraic functions g: A -> A formed by freezing all but one of

the places in one of the operations G of 31. In fact it is obviously enough to

consider arbitrary (f(a),f(c)) E 90(a, b) and show that (gf(a), gf(c)) is in the

transitive-symmetric hull of 90(a, b). By definition of 0o(a, b), we have c G A¡

for some z, and #/ < Mx. Now consider the algebraic functions

hj(z) = PJ(gfz,gfa,a)       (Kj<2N).

Clearly #/z, < M2, and hj(d) = a, by our identities; thus each hj(c) E Ai+X.

Next consider the algebraic functions

f¡(z) = G¡(gf(c), gf(a), a, z)       (1 < i < N ).

It is clear that #/ < Mx, and thus we have (f¡(a), f¡hj(c)) G 90(a, b); in

particular, the following pairs are in 90(a, b):

}•
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(fxa,fxhxc),   (fxa,fxh2c),

(f2a,f2h3c),   (f2a,f2h4c),

Un^Jn^n-ic),   {fNa,fNh2Nc).

In the identities stated above, if we now substitute gf(c) for x, gf(a) for v, and

a for z, we obtain

gfc = fxhxc,

fxh2c = f2h3c,

f2h4c = f3hsc,

fNh2Nc = gfa.

Combining these equalities with our list of pairs from 90(a, b), we easily

obtain that (gfa, gfc) is in the transitive-symmetric hull of 90(a, b).   □

Lemma 2. There exists a function v: u-*u (depending only on V, which is

assumed congruence-regular) with the following property. If a,b,c,d G 91 G T

and (c, d) E 9(a, b), then (c, d) is in the transitive-symmetric hull of a set of M

pairs (f(a), fib)), with each f an algebraic function of rank < v(M), where M

denotes the power of the smallest congruence class containing a, b, c and d.

Proof. Consider the representation in Lemma 1. It is clear that AM =

AM+X = . . . , since a sequence b, fx(b), f2fx(b), f3f2fx(b), . . . with each

f¡(a) = a, must repeat itself at least once in M steps, and hence can be

shortened if it is longer than M. This obviously places a bound on the ranks

of algebraic functions required. And the length of the necessary transitive

chain is obviously limited by M.   \~\

Our next lemma is well known for groups (see [6, 51.23, p. 146]), limiting

the orders of chief factors in varieties generated by a finite group. We have

heard that the general case was previously discovered by J. B. Nation.

Lemma 3. If 91 is finite and HSP 9Í is congruence-permutable, then every

finite 93 G HSP 91 has a strictly increasing sequence of congruence blocks

B0 < Bx < ■ ■ • <Bk = %¡, with \B,\ < |9I|'/or each i < k.

Proof. Let us have 93 = 6/0 with S Ç 91™. We define congruences Oj

(0 < y < m) on S as follows:

c 9j c' <-► c, = c\       (i =y + l,y + 2,.. ., m).

(And thus \ = 80 Q 9X Q ■ ■ ■ Q0m = ©2.) Let us look at one (9 V 9f)-
block U, and count the number of (9 V Ö,_,)-blocks which it contains. Fix

c E U. Congruence-pennutabUity tells us that for each y£ l/we have c 9j z

9 y for some z G 6. Suppose we also have c 9j z' 9 y' with z and z' agreeing in
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their/th coordinate; then the definition of 9j tells us that z 9j_x z', and hence

y(9 V 9j_x)y'. Thus the (9 V 07._,)-block of y E U is determined by the/th
coordinate of z, which can take only |3t| values. Hence each (9 V fy)-block

contains at most |3I| (9 V fy_i)-blocks. Regarding each 9 V 9} as a con-

gruence uV on 93 = S/0, we have the corresponding property: each i^-block

contains at most |3l| \b}_ ,-blocks.

It is now easy to construct the desired sequence of congruence blocks; we

start at the top and work downward. Define U0= B and U¡_x = the largest

of all ^-blocks (for any/) which are proper subsets of U¡. Since B is finite and

\p0 = &B, the process terminates at some singleton Uk. Renumbering upward

via B¡ = Uk_¡ finishes the construction.   □

In the spirit of [2] and [8] we define a congruence formula to be any positive

4-ary formula <p(-, -, •, •) obeying Vy2[3x<p(x, x,y, z)->y = z]. It is shown

in [8] that for a,b E 31, the principal congruence 9(a, b) consists of all pairs

(c, d) for which 311= tp(a, b, c, d) for some congruence formula q>. (Our proof

in [8] was based on Mal'tsev's description mentioned above; a direct proof is

even easier: just show that all such (c, d) form a congruence relation.) We

now refine this congruence-formula description for regular and permutable

varieties generated by a finite algebra.

Lemma 4. If °V = HSP 31 (with 31 finite) is regular and permutable, then

there exists a sequence tp1,tp2> • ■ • °f congruence formulas with the following

property. The elements of every finite s.i. algebra 93 G Y can be arranged in a

sequence b0, bx, b2, . . . such that 931= <pj(b¡, b}, ¿z0, bx) whenever i </.

Proof. Take B0 c Bx c B2 c . . . as provided by Lemma 3. By con-

gruence-regularity, the minimum congruence 9 on 93 contains a pair (b0, bx)

with b0>bx G Bx and b0 ¥" bx. Now simply choose the sequence so that for

each/, bj G By Certainly for i </ we have (b0, bx) E 9(b¡, bj). By Lemma 2,

(bQ, bx) is in the transitive-symmetric hull of at most |3Ip pairs (f(b,), f(bj)),

with each / an algebraic function of rank < KW)- It should now be clear

how we build the formula <pr We write down all "chains" linking b0 with ¿>,

with < 131p links composed of pairs (f(b¡), f(bf)) (there are a finite number),

form their disjunction, and finally existentially quantify over all parameters

appearing in the terms designating algebraic functions.   □

Notice that the conclusion of this lemma involves a weakened version of

Baldwin and Berman's notion [2] of definable principal congruences.

Theorem. If 31 is a finite algebra with HSP 31 congruence-regular and

congruence-permutable, and if HSP 31 contains arbitrarily large finite subdi-

rectly irreducible algebras, then it contains an infinite subdirectly irreducible

algebra.

Proof. Let 93, be s.i. with |93,| > i (i > 1). Write 93, = {b^ bn, ba,...)

according to Lemma 4. Let 93 be a nonprincipal ultraproduct of <93,: i E />
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and take b0,bx,b2, . . . G93 such that for eachy, the /th coordinate of b¡ is by

(a.e. in /). Los' theorem tells us that 23 N q>j(b¡, bj, ¿>0, bx) whenever / <y where

<p, is as in Lemma 4. Thus all 6, must be distinct in 93/0 whenever (biy, bx) £

9, and hence such a quotient 93/0 is always infinite. If we take 9 to be a

maximal congruence separating b0 and bx, then 93/0 is infinite and s.i. □
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