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SUBDIRECTLY IRREDUCIBLE ALGEBRAS IN REGULAR,
PERMUTABLE VARIETIES!

W. TAYLOR

ABSTRACT. If 4 is a finite algebra in a regular, permutable variety (of finite
type), then the variety generated by A either contains an infinite subdirectly
irreducible algebra or contains only finitely many subdirectly irreducible
algebras. We conjecture that the hypothesis “regular and permutable”
cannot be fully removed.

Quackenbush asked [7] whether there exists a finite algebra % such that
% = HSP U has infinitely many finite subdirectly irreducible (s.i.) algebras
but no infinite s.i. algebras. He also asked, “Can it be of finite type; can it be
a groupoid, semigroup or group?”’ Except for groups (settled here, and
probably essentially known all along), these questions remain open. Baldwin
and Berman [2] relaxed the question to that of the existence of a locally finite
V of finite type with arbitrarily large finite s.i.’s but with no infinite s.i. They
were able to find such V" which are locally finite but not of finite type, and
also of finite type but not locally finite. And recently Baldwin [1] came close:
his V is locally finite and of finite type, has large finite s.i.’s and exactly one
infinite s.i.

Here we show that there is no such W in a variety of finite type which is
congruence-regular and congruence-permutable. (See the theorem at the end of
this article; it was announced in [9].) We thank K. Baker, J. Baldwin, R.
Freese, W. Lampe and E. Nelson for valuable conversations about this
material.

We will assume that congruence-permutability is well known to the reader
(see e.g. [4, pp. 119 and 172]). And V is congruence-regular iff every con-
gruence on every A € V is determined by any one of its blocks. The main
fact we will need about congruence-regularity [3], [5], [10] is that it is
equivalent to the existence of V-terms P(x,y,z) (1 <j < 2N) and
G(x,y, 2z, w) (1 <i < N) such that V obeys the following identities:

P(x,x,z2)=z (1<j<2N),
X = Gl(x,y9 Zs Pl(x’y’ Z)),
Gl(X,)’, Z, Pz(X,)’, Z)) = GZ(x’y’ Z, P3(x’y’ Z)),
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Gz(x,y, z, P4(x,y, z)) = G3(x’ya 2z, Ps(x’y$ z))’

GN(x’y’ 2z, Pz;v(x’)” Z)) =)
We will use these identities for our first lemma, which refines Mal’tsev’s
well known description of principal congruence relations [4, p. 54]. Let us
suppose that each “V-term o has been assigned an (integer-valued) rank

o > 1 with the usual proviso that $F(e,, ..., 0,) > each #o, (cf. [4, pp.
40-41]). For an algebraic function f: 4 — A, define #f to be the smallest
value of fe for f(z) = o(z, a,, . . ., a,) (each a; € A). Define M, = max{§G;:
1<i< N} and
M, = the maximum rank of any term
P(G(Xps oo s X150y Xgy1s - - -5 %), 0,w) (1 i <2N)

for G any fundamental operation and ¢ any term of rank < M,. (The
numbers M, and M,, of course, depend on the variety V, which for con-
venience we will keep fixed throughout this discussion.)

Let us now describe the principal congruence 6(a, b) for a,b € A € V.
Letting f and # denote algebraic functions of one variable, we recursively
define

A= {b},
A; oy = {h(c): c € A;, h(a) = a, $h < M,}
and finally,

bo(a, b) = [(f(a)’f(c)) c€E LJI A, #f < Ml}*

LEMMA 1. 8(a, b) is the transitive-symmetric hull of §(a, b).

PrOOF. It is clearly enough to see that this hull is closed under the actions
of OAF’s, i.e. algebraic functions g: 4 — A4 formed by freezing all but one of
the places in one of the operations G of . In fact it is obviously enough to
consider arbitrary (f(a), f(c)) € 0,(a, b) and show that (gf(a), gf(¢)) is in the
transitive-symmetric hull of 8(a, b). By definition of 8y(a, b), we have ¢ € 4,
for some i, and # f < M,. Now consider the algebraic functions

h(z) = P(gfz,gfa,a) (1 <j<2N).
Clearly #h, < M,, and hy(a) = a, by our identities; thus each h(c) € 4,,,.
Next consider the algebraic functions
fi(2) = G(gf(c), gf(a),a,2z) (1<i<N).

It is clear that #f < M,, and thus we have (f(a), fA/(c)) € O(a, b); in
particular, the following pairs are in 8(a, b):
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(fia, fikye),  (fia, fihye),
(fza,f2h3c), (fza’f2h4c),

(fva fuhan-1€),  (fna, fyhance)-
In the identities stated above, if we now substitute gf(c) for x, gf(a) for y, and
a for z, we obtain

gfc = flhlc’
Sihye = fohse,
Sfohye = f3hsc,

Svhone = gfa.
Combining these equalities with our list of pairs from fy(a, b), we easily
obtain that (gfa, gfc) is in the transitive-symmetric hull of 8(a, b). []

LEMMA 2. There exists a function v: w — w (depending only on V, which is
assumed congruence-regular) with the following property. If a,b,c,d € A €V
and (¢, d) € 0(a, b), then (c, d) is in the transitive-symmetric hull of a set of M
pairs (f(a), f(b)), with each f an algebraic function of rank < v(M), where M
denotes the power of the smallest congruence class containing a, b, ¢ and d.

ProoF. Consider the representation in Lemma 1. It is clear that 4,, =
Apyr= ..., since a sequence b, f,(b), f,fi(b), f;/ofi(b),... with each
J(a) = a, must repeat itself at least once in M steps, and hence can be
shortened if it is longer than M. This obviously places a bound on the ranks
of algebraic functions required. And the length of the necessary transitive
chain is obviously limited by M. [J

Our next lemma is well known for groups (see [6, 51.23, p. 146]), limiting
the orders of chief factors in varieties generated by a finite group. We have
heard that the general case was previously discovered by J. B. Nation.

LemMa 3. If U is finite and HSP U is congruence-permutable, then every
finite B € HSP A has a strictly increasing sequence of congruence blocks
Bo < Bl <. 0 < Bk = %, With IB,I < 'al‘fo’ each i< k.

PROOF. Let us have B = €/6 with € C A™. We define congruences 6,
(0 < j < m) on € as follows:

clhcoc=d (i=j+L,j+2...,m).
(And thus A; =6, C 0, C - - C 6, =G%) Let us look at one (0 \/ 6)
block U, and count the number of (8 V/ 6;_,)-blocks which it contains. Fix

¢ € U. Congruence-permutability tells us that for each y € U we have ¢ §; z
0 y for some z € €. Suppose we also have ¢ §; 2’ 8 y’ with z and z’ agreeing in
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their jth coordinate; then the definition of §; tells us that z 0,_, z’, and hence
y(@ \V 6;_,)y". Thus the (§ \/ ;_,)-block of y € U is determined by the jth
coordinate of z, which can take only |%| values. Hence each (4 \/ §)-block
contains at most |A| (8 \/ §;_,)-blocks. Regarding each 8 \/ §; as a con-
gruence y; on B = €/0, we have the corresponding property: each y;-block
contains at most || y;_,-blocks.

It is now easy to construct the desired sequence of congruence blocks; we
start at the top and work downward. Define Uy, = B and U,_, = the largest
of all y;-blocks (for any j) which are proper subsets of U;. Since B is finite and
Yo = Ap, the process terminates at some singleton U,. Renumbering upward
via B, = U, _, finishes the construction. []

In the spirit of [2] and [8] we define a congruence formula to be any positive
4-ary formula ¢(-, -, -, -) obeying Vyz[Ixe(x, x, y, z) >y = z]. It is shown
in [8] that for a,b € %A, the principal congruence #(a, b) consists of all pairs
(¢, d) for which A F ¢(a, b, c, d) for some congruence formula ¢. (Our proof
in [8] was based on Mal’tsev’s description mentioned above; a direct proof is
even easier: just show that all such (¢, d) form a congruence relation.) We
now refine this congruence-formula description for regular and permutable
varieties generated by a finite algebra.

LemMMA 4. If V = HSP U (with U finite) is regular and permutable, then
there exists a sequence ®,,¢,, . .. of congruence formulas with the following
property. The elements of every finite s.i. algebra B8 € V can be arranged in a
sequence by, b, b,, . . . such that B F @b, b;, by, b)) whenever i < j.

ProoFr. Take By C B, C B, C ... as provided by Lemma 3. By con-
gruence-regularity, the minimum congruence 8 on B contains a pair (b, b,)
with by,b, € B, and b, # b,. Now simply choose the sequence so that for
each j, b; € B;. Certainly for i <j we have (by, b,) € 8(b, b;). By Lemma 2,
(by, b)) is in the transitive-symmetric hull of at most |} pairs (f(b), f(b)),
with each f an algebraic function of rank < »(JU}). It should now be clear
how we build the formula ¢,. We write down all “chains” linking b, with b,
with < |A} links composed of pairs (f(b), f(b)) (there are a finite number),
form their disjunction, and finally existentially quantify over all parameters
appearing in the terms designating algebraic functions. [J

Notice that the -conclusion of this lemma involves a weakened version of
Baldwin and Berman’s notion [2] of definable principal congruences.

THEOREM. If W is a finite algebra with HSP A congruence-regular and
congruence-permutable, and if HSP % contains arbitrarily large finite subdi-
rectly irreducible algebras, then it contains an infinite subdirectly irreducible
algebra.

PROOF. Let B; be s.i. with |B,| > i (i > 1). Write B, = {byg, by, by, ... }
according to Lemma 4. Let B be a nonprincipal ultraproduct of (8;: i € I)
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and take bg,b,,b,, . . . €B such that for each j, the ith coordinate of b; is by
(a.e. in 7). ko’ theorem tells us that B F (b, b;, by, b)) whenever i <j where
@ is as in Lemma 4. Thus all b; must be distinct in B/ whenever (b, b)) &
0, and hence such a quotient B/8 is always infinite. If we take 6 to be a
maximal congruence separating b, and b,, then B/0 is infinite and s.i. []
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