SUBDIRECTLY IRREDUCIBLE ALGEBRAS IN REGULAR, PERMUTABLE VARIETIES¹

W. TAYLOR

ABSTRACT. If A is a finite algebra in a regular, permutable variety (of finite type), then the variety generated by A either contains an infinite subdirectly irreducible algebra or contains only finitely many subdirectly irreducible algebras. We conjecture that the hypothesis "regular and permutable" cannot be fully removed.

Quackenbush asked [7] whether there exists a finite algebra $\mathfrak A$ such that $\mathfrak V=\mathbf{HSP}\,\mathfrak A$ has infinitely many finite subdirectly irreducible (s.i.) algebras but no infinite s.i. algebras. He also asked, "Can it be of finite type; can it be a groupoid, semigroup or group?" Except for groups (settled here, and probably essentially known all along), these questions remain open. Baldwin and Berman [2] relaxed the question to that of the existence of a locally finite $\mathfrak V$ of finite type with arbitrarily large finite s.i.'s but with no infinite s.i. They were able to find such $\mathfrak V$ which are locally finite but not of finite type, and also of finite type but not locally finite. And recently Baldwin [1] came close: his $\mathfrak V$ is locally finite and of finite type, has large finite s.i.'s and exactly *one* infinite s.i.

Here we show that there is no such $\mathfrak A$ in a variety of finite type which is congruence-regular and congruence-permutable. (See the theorem at the end of this article; it was announced in [9].) We thank K. Baker, J. Baldwin, R. Freese, W. Lampe and E. Nelson for valuable conversations about this material.

We will assume that congruence-permutability is well known to the reader (see e.g. [4, pp. 119 and 172]). And $^{\circ}V$ is congruence-regular iff every congruence on every $\mathfrak{A} \in ^{\circ}V$ is determined by any one of its blocks. The main fact we will need about congruence-regularity [3], [5], [10] is that it is equivalent to the existence of $^{\circ}V$ -terms $P_j(x, y, z)$ $(1 \le j \le 2N)$ and $G_i(x, y, z, w)$ $(1 \le i \le N)$ such that $^{\circ}V$ obeys the following identities:

$$P_{j}(x, x, z) = z \qquad (1 \le j \le 2N),$$

$$x = G_{1}(x, y, z, P_{1}(x, y, z)),$$

$$G_{1}(x, y, z, P_{2}(x, y, z)) = G_{2}(x, y, z, P_{3}(x, y, z)),$$

Received by the editors October 2, 1978.

AMS (MOS) subject classifications (1970). Primary 08A15.

¹Research supported in part by N.S.F. Grant MCS 76-06558-A01.

$$G_{2}(x, y, z, P_{4}(x, y, z)) = G_{3}(x, y, z, P_{5}(x, y, z)),$$

$$\vdots$$

$$G_{N}(x, y, z, P_{2N}(x, y, z)) = y.$$

We will use these identities for our first lemma, which refines Mal'tsev's well known description of principal congruence relations [4, p. 54]. Let us suppose that each $\[\nabla \]$ -term σ has been assigned an (integer-valued) rank $\sharp \sigma > 1$ with the usual proviso that $\sharp F(\sigma_1, \ldots, \sigma_n) > \text{each } \sharp \sigma_i$ (cf. [4, pp. 40-41]). For an algebraic function $f: A \to A$, define $\sharp f$ to be the smallest value of $\sharp \sigma$ for $f(z) = \sigma(z, a_1, \ldots, a_n)$ (each $a_i \in A$). Define $M_1 = \max\{\sharp G_i: 1 \le i \le N\}$, and

 M_2 = the maximum rank of any term

$$P_i(G(x_1,\ldots,x_{k-1},\sigma,x_{k+1},\ldots,x_n),v,w)$$
 $(1 \le i \le 2N)$

for G any fundamental operation and σ any term of rank $\leq M_1$. (The numbers M_1 and M_2 , of course, depend on the variety \mathcal{V} , which for convenience we will keep fixed throughout this discussion.)

Let us now describe the principal congruence $\theta(a, b)$ for $a, b \in \mathfrak{A} \in \mathcal{V}$. Letting f and h denote algebraic functions of one variable, we recursively define

$$A_0 = \{b\},$$

 $A_{i+1} = \{h(c): c \in A_i, h(a) = a, \sharp h \leq M_2\}$

and finally,

$$\theta_0(a,b) = \left\{ (f(a),f(c)) \colon c \in \bigcup_{i=1}^{\infty} A_i, \sharp f \leqslant M_1 \right\}.$$

LEMMA 1. $\theta(a, b)$ is the transitive-symmetric hull of $\theta_0(a, b)$.

PROOF. It is clearly enough to see that this hull is closed under the actions of OAF's, i.e. algebraic functions $g: A \to A$ formed by freezing all but one of the places in one of the operations G of \mathfrak{A} . In fact it is obviously enough to consider arbitrary $(f(a), f(c)) \in \theta_0(a, b)$ and show that (gf(a), gf(c)) is in the transitive-symmetric hull of $\theta_0(a, b)$. By definition of $\theta_0(a, b)$, we have $c \in A_i$ for some i, and $\sharp f \leq M_1$. Now consider the algebraic functions

$$h_j(z) = P_j(gfz, gfa, a) \qquad (1 \le j \le 2N).$$

Clearly $\sharp h_j \leq M_2$, and $h_j(a) = a$, by our identities; thus each $h_j(c) \in A_{i+1}$. Next consider the algebraic functions

$$f_i(z) = G_i(gf(c), gf(a), a, z) \qquad (1 \le i \le N).$$

It is clear that $\sharp f_i \leq M_1$, and thus we have $(f_i(a), f_i h_j(c)) \in \theta_0(a, b)$; in particular, the following pairs are in $\theta_0(a, b)$:

198 W. TAYLOR

$$(f_1a, f_1h_1c), (f_1a, f_1h_2c),$$

 $(f_2a, f_2h_3c), (f_2a, f_2h_4c),$
 \vdots
 $(f_Na, f_Nh_{2N-1}c), (f_Na, f_Nh_{2N}c).$

In the identities stated above, if we now substitute gf(c) for x, gf(a) for y, and a for z, we obtain

$$gfc = f_1h_1c,$$

$$f_1h_2c = f_2h_3c,$$

$$f_2h_4c = f_3h_5c,$$

$$\vdots$$

$$f_Nh_{2N}c = gfa.$$

Combining these equalities with our list of pairs from $\theta_0(a, b)$, we easily obtain that (gfa, gfc) is in the transitive-symmetric hull of $\theta_0(a, b)$.

LEMMA 2. There exists a function $v: \omega \to \omega$ (depending only on V, which is assumed congruence-regular) with the following property. If $a,b,c,d \in \mathfrak{A} \in {}^{c}\mathbb{V}$ and $(c,d) \in \theta(a,b)$, then (c,d) is in the transitive-symmetric hull of a set of M pairs (f(a),f(b)), with each f an algebraic function of rank < v(M), where M denotes the power of the smallest congruence class containing a,b,c and d.

PROOF. Consider the representation in Lemma 1. It is clear that $A_M = A_{M+1} = \ldots$, since a sequence b, $f_1(b)$, $f_2f_1(b)$, $f_3f_2f_1(b)$, ... with each $f_1(a) = a$, must repeat itself at least once in M steps, and hence can be shortened if it is longer than M. This obviously places a bound on the ranks of algebraic functions required. And the length of the necessary transitive chain is obviously limited by M. \square

Our next lemma is well known for groups (see [6, 51.23, p. 146]), limiting the orders of chief factors in varieties generated by a finite group. We have heard that the general case was previously discovered by J. B. Nation.

LEMMA 3. If $\mathfrak A$ is finite and HSP $\mathfrak A$ is congruence-permutable, then every finite $\mathfrak B \in \mathbf{HSP} \, \mathfrak A$ has a strictly increasing sequence of congruence blocks $B_0 < B_1 < \cdots < B_k = \mathfrak B$, with $|B_i| < |\mathfrak A|^i$ for each i < k.

PROOF. Let us have $\mathfrak{B} = \mathfrak{C}/\theta$ with $\mathfrak{C} \subseteq \mathfrak{A}^m$. We define congruences θ_j $(0 \le j \le m)$ on \mathfrak{C} as follows:

$$c \theta_j c' \leftrightarrow c_i = c'_i \qquad (i = j + 1, j + 2, \ldots, m).$$

(And thus $\Delta_{\mathfrak{C}} = \theta_0 \subseteq \theta_1 \subseteq \cdots \subseteq \theta_m = \mathfrak{C}^2$.) Let us look at one $(\theta \vee \theta_j)$ -block U, and count the number of $(\theta \vee \theta_{j-1})$ -blocks which it contains. Fix $c \in U$. Congruence-permutability tells us that for each $y \in U$ we have $c \theta_j z \theta_j$ for some $z \in \mathfrak{C}$. Suppose we also have $c \theta_j z' \theta y'$ with z and z' agreeing in

their jth coordinate; then the definition of θ_j tells us that z θ_{j-1} z', and hence $y(\theta \lor \theta_{j-1})y'$. Thus the $(\theta \lor \theta_{j-1})$ -block of $y \in U$ is determined by the jth coordinate of z, which can take only $|\mathfrak{A}|$ values. Hence each $(\theta \lor \theta_j)$ -block contains at most $|\mathfrak{A}|$ $(\theta \lor \theta_{j-1})$ -blocks. Regarding each $\theta \lor \theta_j$ as a congruence ψ_j on $\mathfrak{B} = \mathfrak{C}/\theta$, we have the corresponding property: each ψ_j -block contains at most $|\mathfrak{A}|$ ψ_{j-1} -blocks.

It is now easy to construct the desired sequence of congruence blocks; we start at the top and work downward. Define $U_0 = B$ and $U_{i-1} =$ the largest of all ψ_j -blocks (for any j) which are proper subsets of U_i . Since B is finite and $\psi_0 = \Delta_B$, the process terminates at some singleton U_k . Renumbering upward via $B_i = U_{k-i}$ finishes the construction. \square

In the spirit of [2] and [8] we define a congruence formula to be any positive 4-ary formula $\varphi(\cdot, \cdot, \cdot, \cdot)$ obeying $\forall yz[\exists x\varphi(x, x, y, z) \rightarrow y = z]$. It is shown in [8] that for $a,b \in \mathfrak{A}$, the principal congruence $\theta(a,b)$ consists of all pairs (c,d) for which $\mathfrak{A} \models \varphi(a,b,c,d)$ for some congruence formula φ . (Our proof in [8] was based on Mal'tsev's description mentioned above; a direct proof is even easier: just show that all such (c,d) form a congruence relation.) We now refine this congruence-formula description for regular and permutable varieties generated by a finite algebra.

LEMMA 4. If $\mathbb{V} = \mathbf{HSP} \, \mathbb{X}$ (with \mathbb{X} finite) is regular and permutable, then there exists a sequence $\varphi_1, \varphi_2, \ldots$ of congruence formulas with the following property. The elements of every finite s.i. algebra $\mathfrak{B} \in \mathbb{V}$ can be arranged in a sequence b_0, b_1, b_2, \ldots such that $\mathfrak{B} \models \varphi_i(b_i, b_i, b_0, b_1)$ whenever i < j.

PROOF. Take $B_0 \subset B_1 \subset B_2 \subset \ldots$ as provided by Lemma 3. By congruence-regularity, the minimum congruence θ on \mathfrak{B} contains a pair (b_0, b_1) with $b_0, b_1 \in B_1$ and $b_0 \neq b_1$. Now simply choose the sequence so that for each $j, b_j \in B_j$. Certainly for i < j we have $(b_0, b_1) \in \theta(b_i, b_j)$. By Lemma 2, (b_0, b_1) is in the transitive-symmetric hull of at most $|\mathfrak{A}|^{j}$ pairs $(f(b_i), f(b_j))$, with each f an algebraic function of rank $< \nu(|\mathfrak{A}|^{j})$. It should now be clear how we build the formula φ_j . We write down all "chains" linking b_0 with b_1 with $< |\mathfrak{A}|^{j}$ links composed of pairs $(f(b_i), f(b_j))$ (there are a finite number), form their disjunction, and finally existentially quantify over all parameters appearing in the terms designating algebraic functions. \square

Notice that the conclusion of this lemma involves a weakened version of Baldwin and Berman's notion [2] of definable principal congruences.

THEOREM. If $\mathfrak A$ is a finite algebra with HSP $\mathfrak A$ congruence-regular and congruence-permutable, and if HSP $\mathfrak A$ contains arbitrarily large finite subdirectly irreducible algebras, then it contains an infinite subdirectly irreducible algebra.

PROOF. Let \mathfrak{B}_i be s.i. with $|\mathfrak{B}_i| > i$ (i > 1). Write $\mathfrak{B}_i = \{b_{i0}, b_{i1}, b_{i2}, \dots\}$ according to Lemma 4. Let \mathfrak{B} be a nonprincipal ultraproduct of $\langle \mathfrak{B}_i : i \in I \rangle$

200 W. TAYLOR

and take $b_0, b_1, b_2, \ldots \in \mathfrak{B}$ such that for each j, the ith coordinate of b_j is b_{ij} (a.e. in i). Los' theorem tells us that $\mathfrak{B} \models \varphi_j(b_i, b_j, b_0, b_1)$ whenever i < j where φ_j is as in Lemma 4. Thus all b_j must be distinct in \mathfrak{B}/θ whenever $(b_0, b_1) \notin \theta$, and hence such a quotient \mathfrak{B}/θ is always infinite. If we take θ to be a maximal congruence separating b_0 and b_1 , then \mathfrak{B}/θ is infinite and s.i. \square

REFERENCES

- 1. J. T. Baldwin, The number of subdirectly irreducible algebras in a variety. II, Algebra Universalis (to appear).
- 2. J. T. Baldwin and J. Berman, The number of subdirectly irreducible algebras in a variety, Algebra Universalis 5 (1975), 379-389.
- 3. B. Csákány, Characterizations of regular varieties, Acta Sci. Math. (Szeged) 31 (1970), 187-189.
 - 4. G. Grätzer, Universal algebra, Van Nostrand, Princeton, N. J., 1968.
- 5. _____, Two Mal'cev-type theorems in universal algebra, J. Combinatorial Theory 8 (1970), 334-342.
 - 6. H. Neumann, Varieties of groups, Springer-Verlag, Berlin, 1967.
- 7. R. W. Quackenbush, Equational classes generated by finite algebras, Algebra Universalis 1 (1971), 265-266.
 - 8. W. Taylor, Residually small varieties, Algebra Universalis 2 (1972), 33-53.
- 9. _____, Residual finiteness in congruence-regular and permutable varieties, Notices Amer. Math. Soc. 25 (1978), A-350.
- 10. R. Wille, Kongruenzklassengeometrien, Lecture Notes in Math., vol. 113, Springer-Verlag, Berlin, 1975.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, COLORADO 80309