A note on the localization theorem for projective modules
HTML articles powered by AMS MathViewer
- by Clayton Sherman
- Proc. Amer. Math. Soc. 75 (1979), 207-208
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532136-8
- PDF | Request permission
Abstract:
Let R be a ring and S a central multiplicative subset. An example is given to show that the localization theorem for projective modules, valid when S consists of non-zero-divisors, does not hold when S is allowed to contain zero-divisors.References
- S. M. Gersten, The localization theorem for projective modules, Comm. Algebra 2 (1974), 317–350. MR 357547, DOI 10.1080/00927877408822015
- Daniel R. Grayson, The $K$-theory of hereditary categories, J. Pure Appl. Algebra 11 (1977/78), no. 1-3, 67–74. MR 476833, DOI 10.1016/0022-4049(77)90041-X —, Higher algebraic K-theory: II (after Quillen), Algebraic K-Theory (Evanston, 1976), Lecture Notes in Math., vol. 551, Springer-Verlag, New York, 1976.
- Irving Kaplansky, Fields and rings, 2nd ed., Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1972. MR 0349646
Bibliographic Information
- © Copyright 1979 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 75 (1979), 207-208
- MSC: Primary 18F25
- DOI: https://doi.org/10.1090/S0002-9939-1979-0532136-8
- MathSciNet review: 532136